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ABSTRACT  

In recent years, with the vigorous development of artificial intelligence and autonomous driving 
technology, the importance of scene perception technology is increasing. Unsupervised deep learning 
based methods have demonstrated a certain level of robustness and accuracy in some challenging 
scenes. By inferring depth from a single input image without any ground truth label, a lot of time and 
resources can be saved. However, unsupervised depth estimation has defects in robustness and 
accuracy under complex environment which could be improved by modifying network structure and 
incorporating other modal information. In this paper, we propose an unsupervised, monocular depth 
estimation network achieving high speed and accuracy, and a learning framework with our depth 
estimation network to improve depth performance by incorporating transformed images across 
different modalities. The depth estimator is an encoder-decoder network to generate the multi-scale 
dense depth map. The sub-pixel convolutional layer is adopted to obtain depth super-resolution by 
replacing the up-sample branches. The cross-modal depth estimation using near-infrared image and 
RGB image enhances the performance of depth estimation than pure RGB image. The training mode 
is to transfer both images to the same modality and then carry out super-resolved depth estimation for 
each stereo camera pair. Compared with the initial results of depth estimation using only RGB images, 
the experiment verifies that our depth estimation network with the cross-modal fusion system designed 
in this paper achieves better performance on public datasets and a multi-modal dataset collected by 
our stereo vision sensor. 
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1. INTRODUCTION 
Two-dimensional image depth estimation, one of the basic problems of computer vision, has been studied for a long 

time. It has received extensive attention in the past, and has been applied in the fields of robotics, self-driving car, scene 
understanding and three-dimensional reconstruction. These applications usually use multiple-angle imaging of the same 
scene for depth estimation, such as stereo image pair, movement of single camera, and continuous frames for depth 
estimation. Although the depth estimation of many images has made great progress, monocular depth estimation that has 
the nature of low costs and few constraints, still needs to be improved in terms of robustness against real-world scenarios. 

Monocular depth estimation technology, is a kind of method to predict the depth value of each pixel in an RGB image. 
It is very important to understand the scene geometry, but to give an accurate estimate of the depth of the image, is very 
challenging. This is because that it is an ill-posed problem due to the inherent ambiguity. Saxena et al.3 first introduced to 
apply deep learning for monocular depth estimation, namely learning from the RGB image domain to the depth domain. 
Under this background, the multi-scale Convolutional Neural Networks (CNNs) have been proved effective to estimate 
the depth map. In particular, Godard et al.7 proposed the use of the single-generation network to estimate disparity maps, 
and used the consistency constraint model with the learning process. 
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In recent years, depth estimation approaches based on CNNs usually use an encoder-decoder architecture to predict 
dense depth maps. In these networks, repeated convolutions and pooling reduce the excessive output spatial resolution, 
which may be the bottleneck of high-resolution prediction. Therefore, many technologies, such as skip connections, multi-
scale networks, multi-layer deconvolution networks, and super-resolution techniques, are used to synthesize higher-
resolution depth maps. 

In this paper, a method is adopted to take depth estimation as an image reconstruction problem in the training process. 
Moreover, our convolutional network does not need any ground truth value, but takes depth as an intermediate value, so 
as to learn to predict and correct the pixel level correspondence between image pairs. Network structure of this paper is 
based on the encoder-decoder structure. For the encoder stage, it can be regarded as two structures: one is the base dense 
feature extractor, while the other is a contextual information extractor. In the decoder stage, we introduce the decoder 
based on super-resolution residual pyramid and multi-scale depth map prediction. Our method preserves the hierarchical 
structure of the scene and can obtain accurate depth estimations for both large-scale scenes and small objects. In addition, 
our network achieves up to 30FPS on a standard GPU processor. 

This paper also proposes a cross-modal translation framework to estimate depth maps by using other spectral 
information. We estimate the depth by using RGB images and Near Infra-Red (NIR) images, and prove that the modal 
translation is helpful for depth estimation under the condition of unsatisfactory illumination. 

Our contributions are summarized as follows: 

(1) We propose an unsupervised depth estimation network which achieves state-of-the-art performance evidenced by both 
accuracy and speed analysis. 

(2) A cross-modal translation framework is proposed to estimate depth combining multiple spectra of information. 

(3) The proposed method achieves state-of-the-art performance on the challenging KITTI dataset9 and PittsStereo-
RGBNIR dataset17. More importantly, the visual quality of recovered depth maps has been significantly improved, proving 
that the usage of other spectra of images is meaningful.  

 

2. RELATED WORK 
In recent years, there are many researches that focused on depth estimation from images or a single image13. CNNs have 
become the most successful techniques for depth estimation since neural network technology was widely used in visual 
tasks. State-of-the-arts approaches in leveraging both data and structural constraints mostly differ in the type of data and 
supervision used. 
Learning based stereo: Most stereo matching estimation algorithms2,21 calculate the similarity between each pixel in the 
first image and that in the second image. It is typically required to match stereo image pairs4 online, and it is common to 
transform the problem of visual estimation into a one-dimensional search problem for each pixel. With the development 
of neural networks, some studies have shown that better stereo matching results can be achieved by transforming matching 
into supervised learning problems instead of using traditional hand-defined similarity functions. Mayer et al.1 introduced 
a fully convolutional deep network called DispNet to learn the matching function. It utilizes convolution to calculate the 
corresponding relationship between the two images in training, and predicts the disparity for every pixel by minimizing a 
regression training loss. 
Supervised Monocular Depth Estimation: Monocular depth estimation means that only one image is used as input to 
output the completed depth map during the test. Saxena et al.3 proposed a monocular depth technology, introducing a 
model called Make3D to estimate the 3D position and direction of objects. Eigen et al.25,26 showed it is possible to produce 
pixel depth estimation using a two-scale deep network trained on raw pixel images and their corresponding depth values 
by minimizing a scale invariant loss. Since then, a lot of methods based on the technology have been built, such as the 
CRFs22 to improve accuracy, more appropriate usage of loss function based on the network structure and improvement of 
the loss function. But these monocular supervised depth estimation methods still rely on training pairs with high quality, 
pixel alignment, and true ground depth as well. One way to avoid capturing the ground truth of the depth, is to use 
composite data from the simulator and replace the data collection/annotation issues with domain adaptation and virtual 
scene creation issues. We also perform monocular depth estimation, but merely leverage binocular color images to train 
our network with no need for the ground-truth depth. 



 
 

 
 

Unsupervised Monocular Depth Estimation: Unsupervised depth estimation15 does not require any labels. It is expensive 
to obtain a large number of ground truth depths or disparity maps, and usually requires a data collection platform similar 
to the target task. Unsupervised training method has been proved to be a promising direction recently to circumvent this 
limitation. The unsupervised training method is usually focused on the training method design, such as synthesizing 
disparity map figure as a proxy task. The relevant work is to explore different architectures generally, such as using the 
shared network to simultaneously perform depth estimation and semantic segmentation18,20,30,34. In contrast, Garg et al.24 
put forward a kind of classical unsupervised depth estimation method based on image synthesis. Godard et al.7 put forward 
that images of different view can be forward and reverse remodeled. There is also some work under the condition without 
any label, but jointly learning the depth and ego-motion from monocular videos16,19. Some adversarial learning strategies27 
are also employed to improve the quality by using image generation technology28 to obtain better depth estimation. 

Cross-Modal translation: Cross-modal translation, also known as cross-spectral translation5,12,31,33, is simply to use 
different spectral information32 to supplement the current spectrum, which has a wide range of applications in computer 
vision and image processing. Infrared, near-infrared, polarized images and other auxiliary RGB images are commonly 
used for face recognition, unmanned driving assistance, etc. RGB-NIR image pairs are usually used for shadow detection, 
scene recognition and scene analysis. Near-infrared images are also favorable to enhance color images and remove fog. A 
current trend is the application of multi-camera and multi-spectrum, and cross-spectrum is becoming more and more 
important. For example, Zhi et al.17 utilize stereo matching and disparity estimation of corrected spectral pairs to complete 
vision tasks such as detection and tracking. In this paper, we employ modal translation network on NIR and RGB image 
pair, utilize the structural consistency of NIR images to depth estimation, which can be regarded as transferring unique 
features of NIR to RGB images to help monocular depth estimation which is demonstrated by our experiments. 

 

3. METHODOLOGY 
This section describes our monocular image Depth Prediction Network (DPN) and Cross-modal Translation Network 
(CTN). Our depth estimation network consists of two parts: an encoder for multi-scale feature extraction and a residual 
pyramid decoder. CTN is a generative adversarial network for content translation. 
 
3.1 Monocular Depth Network Architecture: 

Our depth estimation network based on the current popular DispNet framework1,10. Following the works in this line, we 
make similar changes to the encoder-decoder network, add skip connections between activation blocks of multi-scale 
extractor to save context information, and add a special module to expand the receptive field and save more details. Then 
the the decoder is composed of several projection recovery units, gradually improve the resolution of the characteristics. 
In order to improve the detail-capability of the network, we connect the bottom feature of the encoder with the top 
projection feature of the same resolution. The architecture is shown in Figure 1. 

 
Figure 1. Monocular Depth Network Architecture. 



 
 

 
 

3.2 Multi-scale feature extractor  

Inspired by Godard et al.7, given an input image, we use scale-pyramid technology to process the input image. We resize 
left and right images to a smaller size, to 1/2,1/4,1/8 of the original image, but we only input the left image into the feature 
extraction network, and the right image pyramid is used for image reconstruction. We can extract the large-scale structure 
and local details at the same time. We extract global features by using a convolution with a stride of 7, then generate multi-
scale feature by using the down-sample group, where the down-sample group is composed by multiple Feature Residual 
Group (FRG) as seen in Figure 2. The size of feature map reduce double after a FRG8. With the feature extractor network 
keep deeper, the size of the feature map keeps smaller. After that, the size of the feature map reaches to 1/32 of the input 
image. Finally, a Spatial and Channel Attention Module29 is used to enlarge the receptive field and the boost representation 
power.  

 
Figure 2. Feature Residual Group. 

Our encoder body is a feature extraction module similar to the structure of ResNet1814. The detailed description of FRG 
is shown in Figure 3, describe it as feature residual block (FRB), S is stride of  continuous convolution,  but it replaces the  
two convolutions of 3×3 with two 1-dimensional convolution, 1×3 and 3×1, on the basic block, which not only reduces 
many training parameters and increases the speed of the forward pass, but also facilitates feature extraction in the direction 
of gradient to extract disparity. Another difference is that in order to save more detail features, we use skip-connections on 
the two blocks, or add a convolution, batch normalization and activation function Relu to the network in our experiment. 

 
Figure 1. Feature Residual Block.  

 

3.3 Residual Pyramid Decoder and Reconstruction 

Inspired by single image super resolution, our encoder uses sub-pixel convolution layer11 to recover resolution, which 
replaced the conventional bilinear upsampling. But the sub-pixel block has not been used in the beginning. The input map 
first passes through two up-conv blocks, where the up-conv is composed by a nearest neighbor and a convolution. Then, 
the size of feature map has been reduced to 1/8 of the original image, while the channel number increased to 8 times of the 
original image. Because we found that when the feature map is too small, the information of the feature map is concentrated 
on the channel, the sub-pixel representation is not a very lightweight way, which will cause the loss of edge information 
and the burden of parameter for channel number grows quickly. Our up-sampling scheme is to restore the image to the 
original resolution after 2 up-conv blocks and 3 sub-pixel blocks. Finally, we recover the multi-scale disparity pyramid 
generated by the disparity generation convolution block, which contains left and right disparity, so we can reconstruct the 



 
 

 
 

left and right view image with them. Through image reconstruction technology6, we can compare the similarity with the 
pyramid of the right view. Thereby, we can obtain the more accurate disparity estimation through this cycle training. 

3.4 Depth Estimation Network Training Loss 

In order to train our depth estimation architecture, we define the total loss as a sum of three parts, and we define a loss C(s) 
at each output of deferent size. The total loss C are the sum of the C(s)(s=1,2,3,4). 

C=∑ 𝐶(𝑠)																																																																																																(
)*+ (1) 

C(s)= 𝐿-.(𝑙, 𝑟) + 𝐿3)(𝑙, 𝑟) + 𝐿45(𝑙, 𝑟)                                                      (2) 

where 𝐿-. is an image reconstruction loss, 𝐿-.	is a disparity smoothness loss and 𝐿-. is a left-right disparity consistency 
loss. Each loss contains two parts, both the left and right components. Next, we present each component of our loss in 
detail. 

Image reconstruction loss: This loss encourages the reconstructed image to appear similar to the training input. A 
combination of a L1 loss and structural similarity measure (SSIM) term as our photometric image reconstruction cost 𝐿-., 
which encodes the quality of the reconstructed image 𝐼	7with the input image I, where N is the numbers of pixels: 

																						𝐿-. =
+
9
∑ 𝛼	

+;<<=>?=@,A,=	7@,AB

C
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Following previous research, we use a SSIM with 3 × 3 block filters and set 𝛼 = 0.85.  

Disparity smoothness loss: This loss enforces smooth disparities, encourages the depth discontinuities to be locally 
smooth with an L1 penalty on the disparity gradients, and the gradients are weighted by an edge-aware term from the 
image domain: 

𝐿3) =
+
9
∑ F𝜕O𝑑GH	 F𝑒

;RSTU=@A
	 SR + F𝜕V𝑑GH	 F𝑒

;RSTW=@A
	 SR

G,H                                  (4) 

Left-right disparity consistency: This loss encourages the predicted left and right disparities to be consistent for 
producing more accurate disparity maps. In our training, we only input left image and output both the left and right disparity 
images, which inevitably leads to inconsistent disparities. Accordingly, we introduce an LI left-right disparity consistency 
penalty to overcome it. Like all the other loss, this loss is evaluated at all the output scale for left and right. For example,	𝐿454  
is depicted in the following equation: 

𝐿454 = +
9
∑ |𝑑GH4 − 𝑑GHY3@AZ

5 |	G,H                                                                             (5) 

3.5 Cross-modal Translation 

Cross-modal translation is used when our RGB image is not ideal due to the external environment, and other spectral image 
cannot be directly applied to our depth estimation network. Inspired by current style transfer network, we choose 
Generative Adversarial Network (GAN) to achieve the transformation of local content and style of multi spectra. We use 
the framework is CycleGAN network, a kind of mirror symmetry GAN network that is widely used to implement domain 
adaptation, by reducing the difference of the image of two different scenarios. The CycleGAN network needs two datasets 
to train which do not need to be aligned, reducing the burden of data collection. The image after style transfer can be used 
to in our depth estimation network.  

 

4. EXPERIMENTAL RESULTS 
In this section, we describe the dataset, the implementation details and evaluations of the network on various 
training/testing configurations. Our method achieves the state-of-the-art results in terms of the speed and accuracy trade-
off. As the standard in this field, we assess the performance of our depth estimation techniques following the protocol by 
Eigen et al.25,26. Data extracted from the KITTI dataset and the stereo images are trained, without any supervision. Sparse 
LiDAR measurement data are adopted as ground truth values to evaluate the performance of monocular depth estimation 
technology. Moreover, the depth estimation of pseudo RGB images after content migration is carried out. The experiment 
shows that our framework has achieved favorable results.  



 
 

 
 

4.1 Dataset 

KITTI: we train and evaluate our network on the KITTI dataset9, which is composed of two HD cameras and Teledyne 
64-line LiDARs. It includes semi-dense annotations, RGB images, and sparse depth maps. We use the training protocols 
proposed by Eigen et al.25,26, and compare the result with previous methods on the standard KITTI disparity estimation 
benchmark. To be specific, we leverage the KITTI Eigen split that contains 22600 training, 888 validation, and 697 test 
stereo image pairs, whose main image size is 1242×375 pixels, we use the metrics described by Eigen to evaluate the 
estimated result, where metrics include: Abs Rel, Sq Rel, RMSE and RMSE log. 

Cityscapes: Cityscapes dataset23 consists of stereo pairs of about 50 cities in Germany, which are taken from vehicles 
traveling under different weather conditions. It consists of 22,973 stereo pairs with a size of 2048×1024 pixels. It is mainly 
used for transfer training, not for validation and testing. 

PittsStereo-RGBNIR Dataset: The dataset is captured by 56mm baseline RGB camera and near infrared cameras installed 
on the vehicle, alternating among short, middle and long exposures. Only the middle exposures are utilized in our 
experiments, which collected nearly 1 million stereo images for 1164 ×858 pixels. We take a dataset subset including 
2000 pairs, 2500 for training, and 500 for test, covering sunlight, cloudy and dark conditions of campus road, highway, 
housing, etc. It does not provide depth truth, so we can only make a qualitative statement. The example of the dataset is 
shown in Figure 4. The right image is RGB image, and the left image is NIR image. We can observe that the reflective 
part in RGB image, a big difficulty for depth estimation which could not be observed in NIR image obviously.  

 
Figure 4. An image pair of PittsStereo-RGBNIR Dataset. The left image is RGB image, the right image is NIR image. 

 

4.2 Implementation details 

The network is implemented in TensorFlow. When training monocular estimation network, we used 30 hours to train 
23000 pairs of images for 200 epochs on a 2080Ti GPU. For 512×256 images, the inference speed is very fast, above 30 
frames per second, including the transmission times to and from the GPU. We used Adam optimizer algorithm to train the 
network setting the following parameter values for all training runs: Lambda 1 = 0.1, lambda 2 = 0.01, alpha = 0.85. The 
learning rate and batch size (4 or 8) are estimated via hyper-parameter search. The initial learning rate is 5e-4. We augment 
images before inputting to the network using the random horizontal flipping, random rotation, the random contrast and 
brightness with 50% of chance, and train our network on a random crop into resolution about 512×256 for KITTI and 
Cityscapes datasets. We employ a 2080TI GPU to train translation network on 2500 image pairs for 20 hours. 

Post-processing: Post-processing step for output is necessary to reduce the effects of stereo occlusions on disparity ramps 
produced by the left side of the image and of the occluders. In the test time, there are two disparity maps, one is 𝑑 generated 
by input image 𝑙, the other is the 𝑑[generated by 	𝑙[, the horizontally flipped image of 𝑙 . We combine two disparity maps 



 
 

 
 

to output the final result by assigning the first 5% on the left of image 𝑑, and the last 5% on the right to disparities image 
𝑑[, and the central pixel of the final result is the average of two disparity maps. It achieves a higher precision, but doubles 
the amount of time. We indicate such results using pp in result tables. 

4.3 Performance comparisons 

Quantitative Evaluation: Following previous study, we used the four indexes, including Abs Rel, Sq Rel, RMSE, RMSE 
log and accuracy with three thresholds, to quantitatively assess the depth of our estimated performance.  Table 1 shows 
the results of our depth estimation network and recent approaches. 

Table 1. Results on KITTI 2015 which using the split of Eigen et al. K is the KITTI dataset; CS is the Cityscapes. The results of Liu et 
al.35 were a mixture of left and right disparity images, rather than relying solely on the left monocular image. All the other results were 
taken from their papers. The red metric: lower is better; the green metric: higher is better. 

Method Super-
vised 

Datase
t 

Abs Rel Sq Rel RMSE RMSE 
log 

𝜹 < 𝟏. 𝟐𝟓 𝜹 < 𝟏. 𝟐𝟓𝟐 𝜹 < 𝟏. 𝟐𝟓𝟑 

Saxena et al. Yes K 0.280 - 8.734 - 0.601 0.820 0.916 

Eigen et al. Yes K 0.214 1.605 6.563 0.292 0.673 0.884 0.957 

Liu et al. Yes K 0.201 1.584 6.471 0.273 0.680 0.898 0.967 

Train set mean No K 0.361 4.826 8.102 0.377 0.638 0.804 0.894 

Zhou et al. No K 0.208 1.768 6.856 0.283 0.678 0.885 0.973 

Godard et al. No K 0.148 1.344 5.927 0.247 0.803 0.922 0.964 

Ours No K 0.130 1.301 6.174 0.225 0.824 0.933 0.975 

Ours+pp No K 0.125 1.172 5.89 0.216 0.859 0.983 0.977 

Ours No CS+K 0.124 1.066 5.312 0.218 0.847 0.942 0.973 

Ours+pp No CS+k 0.114 0.988 4.945 0.206 0.861 0.949 0.976 

 

It can be seen from Table 1 that our estimation network achieves good results for both unsupervised and supervised 
monocular depth estimation, and proves that post-processing is helpful to improve the accuracy. 

Qualitative Evaluation: We compare our method with other state-of-the-arts methods in Figure 5. It can be seen that our 
method in predicting the depth of the figure on the vision is better than other schemes. Small objects in the distance and 
near large objects can be accurately perceived. The preservation of the multiple object structure is excellent, such as the 
car in the distance in the first line, the completeness of the structure of the truck in the second line, and the aggregation of 
multiple traffic elements in line 5. In addition, our method has a good balance between speed and accuracy, and can be 
applied to devices which need higher real-time performance. 



 
 

 
 

 
Figure 5. Some examples of the results and comparisons with others. From left to right: color test image, our depth output, 
Monodepth, GeoNet and SfmNet depth output. 

4.4 Generalizing to other datasets 

 
Figure 6. Comparison of visual results of depth estimation on the ZJU dataset. The DEPTH_GT is the ground truth depth 

map. The DEPTH_OURS is generated by our depth estimation network. 

In this section, we further illustrate the generalization of our model to other datasets. We use the model trained on 
Cityscapes and KITTI, tested on the ZJU dataset. The ZJU dataset was collected by our laboratory, including left, right 
views and depth map. The depth map was obtained by binocular stereo matching. We collected about 5K pairs for depth 
estimation. 

Table 2. We used our ground truth depth and the corresponding confidence map to evaluate the performance of the depth 
map calculated by our model, and used the same four indexes for evaluation. 0 means that we use a ground truth depth 
map, without excluding any information, and 90 means that we calculate the accuracy only for points whose confidence 
are above 90. 

Confidence Abs Rel Sq Rel RMSE RMSE log 
0 0.4078 7.0083 15.281 0.610 

30 0.3793 6.3485 15.137 0.586 

50 0.2981 5.6736 15.134 0.416 

70 0.3043 5.7518 14.892 0.472 

90 0.3139 5.9783 15.082 0.494 

 

From Figure 8, the generalization of our depth estimate network is fine, but in the area of high confidence degree, the 
accuracy does not get a great progress compared with lower degree. We believe that our depth map is too smooth, because 
of the smooth of the loss function, and cannot be used for very high accuracy of scene. 



 
 

 
 

4.5 Cross-modal image depth estimation 

In Figure 8, the top left is NIR image, the bottom left is RGB image, and the right image is pseudo RGB image. It can be 
clearly found that there are obvious spectral differences between NIR and RGB images. The red box in the Figure 8 
indicates that the structure of distant objects becomes very blurred in the RGB image when the light is blurry, but there is 
no such bad effect in the NIR image. The transferred image perfectly integrates these structure features and can be used 
for monocular depth estimation. 

 
Figure 8. The performance of cross-modal translation. The top left image is a NIR image, the bottom left image is a RGB image, and 

the left image is the pseudo RGB image, which is generated from the NIR-to-RGB translation network.  

In Figure 9, We can observe that the top right image of estimated by RGB directly, due to the reflection of car windows, 
the corresponding depth boundary is blurred, and depth of the structure of objects cannot be well estimated. The bottom 
right image is the depth estimation result conducted by the transferred NIR image, which obviously gets a better depth 
estimation at the original reflective place, and the boundary structure of the object is not lost. We believe that the depth 
estimation effect of the pseudo-color image and color image after content transfer is obviously better than that of the image 
after content transfer, indicating that our method is conducive to solving the problem of spectral limitation. 



 
 

 
 

 
Figure 9. The comparison of the depth estimation. The top left image is RGB image; the bottom image is NIR image; the top right 
image is the depth map produce by RGB image; while the bottom right image is the depth map produce by the pseudo RGB image. 

 

5. CONCLUSION 
In this paper, we propose an unsupervised monocular depth estimation network with a cross-modal image translation 
framework. We use the accessible binocular images to estimate depth by indirectly obtaining disparity through image 
reconstruction technology. The network fully considered different hierarchies of global and detailed information, and our 
loss function improved the coherence of each predicted depth map from certain camera view, and achieved a more accurate 
result in KITTI dataset and more balance speed and accuracy than many fully supervised models. We also show that our 
model can be generalized to other datasets and obtain a robust depth map. 

The cross-modal framework provides a way to transfer images from other spectra into images that our depth estimation 
network can forward propagation, while retaining unique features of the spectrum to help the depth estimation break 
through the limitations of spectrum. In the future work, we can further improve the accuracy and speed of unsupervised 
monocular depth estimation, and focus on applications to other deep learning task using multi spectra of information. 
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