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ABSTRACT 

For Visually Impaired People (VIP), it’s very difficult to perceive their surroundings. To address this problem, we 

propose a scene understanding system to aid VIP in indoor and outdoor environments. Semantic segmentation 

performance is generally sensitive to the environment and illumination changes, including the change between indoor 

and outdoor environments and the change across different weather conditions. Meanwhile, most existing methods have 

paid more attention on either the accuracy or the efficiency, instead of the balance between both of them. In the proposed 

system, the training dataset is preprocessed by using an illumination-invariant transformation to weaken the impact of 

illumination changes and improve the robustness of the semantic segmentation network. Regarding the structure of 

semantic segmentation network, the lightweight networks such as MobileNetV2 and ShuffleNet V2 are employed as the 

backbone of DeepLabv3+ to improve the accuracy with little increasing of computation, which is suitable for mobile 

assistance device. We evaluate the robustness of the segmentation model across different environments on the Gardens 

Point Walking dataset, and demonstrate the extremely positive effect of the illumination-invariant pre-transformation in 

challenging real-world domain. The network trained on computer achieves a relatively high accuracy on ADE20K 

relabeled into 20 classes. The frame rate of the proposed system is up to 83 FPS on a 1080Ti GPU. 
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1. INTRODUCTION 

According to the latest data from World Health Organization (WHO), there are 253 million people estimated to be 

visually impaired globally, and 36 million are blind
1
. Without the sense of sight, it’s very difficult for visually impaired 

people (VIP) to perceive their surroundings, so that the quality of their life is seriously affected. Semantically 

interpreting traversable areas and detecting obstacles are most of the important tasks to assist the navigation of VIP
2
. To 

address these problems and help the VIP understand the scenes more conveniently, a lightweight, precise and fast 

semantic segmentation network is needed to be developed on mobile device. In this paper, we propose a scene 

understanding system, which is an improved semantic segmentation network based on DeepLabv3+. The system can be 

deployed on mobile devices, to aid VIP in indoor and outdoor environments. 

Semantic segmentation used in scene understanding is a practical and challenging task in computer vision. Compared 

with object detection, semantic segmentation assigns a label to every pixel, and recognizes more object classes in an 

image
3
. Focusing on improving the accuracy, many semantic segmentation networks

4, 5, 6
 use well-designed backbone. 

However, robustness is a significant character in practical application of semantic segmentation. Extreme illumination 

variance often happens when scene changes between indoors and outdoors, challenging the robustness of the 

segmentation network in the real world
7, 8

. Illumination invariant preprocessing is a promising approach to confirm a 

stable result under the changing illumination conditions. Moreover, many segmentation networks ignore the 

characteristic of real-time inference, which is more crucial in our VIP assistance situation. To obtain a balance between 

accuracy and speed, DeepLabv3+ 
9
 with lightweight network as the backbone achieves relatively good results in both 

precision and speed. DeepLabv3+ also uses the Atrous Spatial Pyramid Pooling (ASPP)
 10

 to receive different scales of 

feature maps. But in fact, ASPP is not fully utilized yet when the backbone is a lightweight network. Regarding 

lightweight networks, classical networks MobileNetV2
11

 and ShuffleNet V2
12

 have achieved good accuracy without 

much computation and parameters. Combination of DeepLabv3+ with ASPP and lightweight network as backbone may 

reach both better accuracy and real-time performance. 

In this paper, illumination invariant preprocessing is carried out during the training of the models. We adopt the 

DeepLabv3+ as the structure of the network, and use the advanced lightweight networks MobileNetV2, ShuffleNet V2 as 



 

 
 

 

the encoder. ASPP is also applied in the DeepLab structure. The performance evaluation on the Gardens Point Walking 

dataset proves that illumination invariance preprocessing is effective to improve the robustness of segmentation when 

scene changes between indoors and outdoors. Meanwhile, the speed and accuracy are improved to meet the needs of 

faster semantic segmentation, and be suitable to be developed on mobile device for assisting VIP. Our contributions can 

be listed as follows: 

1. We improve the robustness of the semantic segmentation when scene changes between indoors and outdoors by 

adding the illumination invariance preprocessing. 

2. We train a lightweight semantic segmentation model, realizing 50% mean Intersection over Union (mIoU) by using 

DeepLabv3+ with MobileNetV2 on 20-class ADE20K dataset, which can be used on Android mobile phone to realize a 

semantic scene understanding for VIP assistance. 

2. RELATED WORK 

2.1 Illumination invariance processing 

Illumination-invariant transform is used in shadow removal，scene classification and segmentation, There are main 

kinds of methods to remove or reduce the impact of the illumination changing. A kind of method is intrinsic image 

decomposition. The concept of intrinsic image was introduced in
13

. A given RGB image can be decomposed into two 

intrinsic images: reflectance image, which refers to its material-dependent properties, and shading, which refers to its 

light-dependent properties. Reflectance image does not change with the chanve of to light condition, so it’s widely used 

in illumination invariance processing. According to the intrinsic image theory, many approaches
14, 15, 16, 17

 converted 

RGB color space into one channel space representing the illumination variance. The method
18 

combined it with HSV 

color space and improved the results of CNN semantic segmentation. With the success of deep CNN, some researches 

obtained the intrinsic image from input image by training deep CNNs. Paper
19 

developed a deep Retinex-Net learned 

from low-light dataset, to address low-light enhancement. There are also methods that combine the illumination 

invariance decomposition and semantic segmentation together with one single network, such as
20

, which regarded that 

the two tasks have some relationships and proposed an end-to-end CNN architecture to achieve the joint learning. Even 

though many of these illumination invariance processing methods are useful, a simple and effective method is needed for 

our application. 

2.2 Semantic segmentation 

Semantic segmentation based on Convolutional Neural Networks (CNNs), especially Fully Convolutional Networks 

(FCNs) 
21

 has greatly improved the performance of segmentation tasks compared with methods using traditional hand-

crafted features. Inspired by FCN, many more complex model variants have been proposed to get more precise and faster, 

without too much increase of computation. In terms of structure, many classic networks adopted encoder-decoder 

structure, such as U-Net
22

, SegNet
23

, using encoder to extract features and decoder to restore pixel position. Furthermore, 

influenced by ResNet, architectures like ENet
4
, ERFNet

5
 and ERF-PSPNet

24
 paid attention to convolution blocks design 

to improve real-time performance. On the other hand, spatial pyramid pooling was exploited in DeepLab
25

 and PSPNet
6
 

to obtain multi scale information. 

DeepLab series are designed to increase the accuracy without raising too much computation costs. DeepLabv3+ adopted 

a novel encoder-decoder structure, Atrous Spatial Pyramid Pooling (ASPP)
10

 and depthwise separable convolution, then 

made it possible to trade-off precision and runtime by changing a parameter named output stride. 

To meet the needs of running the model on mobile devices for applications, lightweight feature extracting networks have 

the advantages of less parameters and smaller models. A series of works on lightweight architecture design have been 

proposed in recent years, such as Xception, MobileNetV1
26

 and V2
11

, ShuffleNet V1
27

 and V2
12

, etc. MobileNetV2 

applies depthwise convolution to reduce the computation and uses inverted residuals, linear bottlenecks to ensure the 

quality of feature extracting. ShuffleNet V2 uses channel split and shuffle to improve the accuracy without large amount 

of parameters, making it a proper architecture for the network backbone of real-time semantic scene understanding 

system. 

2.3 Network used on mobile device 

With the continuous optimization of network structure, CNN models is getting smaller with less parameters, which 

makes it possible to develop CNN networks on mobile devices with limited computational ability, such as mobile phones 



 

 
 

 

and tablets. Recently, many networks like MobileNet have been developed on IOS and Android, achieving excellent 

performance in object recognition, semantic segmentation and so on. For example, Google has put the real-time 

segmentation of human face and background on smart phone
28

; MobileNetV2 has also been used on mobile phone with 

semantic segmentation structure such as DeepLab for indoor navigation
29

, etc. 

3. METHOD 

This section describes the illumination invariance preprocessing progress and the architecture of our semantic scene 

understanding system. Images are preprocessed into illumination invariant images and fed into the network. The network 

is based on the advanced semantic segmentation DeepLabv3+, with lightweight network (MobilenNetV2, ShuffleNet V2) 

as the encoder. After the encoder loads the pre-trained weights on ImageNet dataset, the model is trained on the adjusted 

ADE20K dataset. In addition, the preprocessing method is applied to improve the robustness of the model under 

different light conditions. 

Figure1. The general view of our semantic scene understanding process. 

3.1 Illumination invariance preprocessing 

For purpose of improving robustness of semantic segmentation in indoor and outdoor scenes, we add the illumination 

invariance preprocessing before feeding the input images to the network. To choose a simple and useful preprocess 

method, we compare all the methods, then follow the one proposed in 
15

 and convert a 3-channel RGB space into a one-

dimensional channel I, which is only related to the materials of objects. The response of a linear image sensor R is 

decided by spectral sensitivity  F  , emitted spectral power distribution  E   incident on an object with surface 

reflectivity  S  , as it is shown by the following equation: 

     ,x E x x x x x xR a n I S E F d     
       

                                             (1) 

where the unit vectors xa and xn represent the direction of light source and the surface normal, respectively. xI  

represents the intensity of illumination on point x in the image. Assuming the  F  can be modeled as a Dirac delta 

function centered on 
i .We take the logarithm of both sides, simplify the geometric factor, and consider three sensor 

responses R1,R2,R3 related to peak sensitivities at wavelengths 
1 2 3    , the Eq.(1) can be write as: 

        2 1 3log log 1 logI R R R       (2) 

After transformation, the one-dimensional color space I is independent of the other parameters if Eq.(3) is satisfied: 

 

2 1 3

1 1-
= +
 

  
  (3) 

In Eq.(3),  is a parameter associated with the peak spectral responses of the camera’s sensors. Finally the one-

dimensional channel I  is computed by 

        2 1 30.5 log log 1 logI R R R        (4) 



 

 
 

 

Considering that ADE20K is a collection of images taken by different cameras, where it is hard to decide the value of   

directly. We choose several common   values to do the experiments and see the results. Finally we take   as 0.3 and 

complete the illumination invariance preprocessing. The preprocessed images are shown in Figure 2. 

 

Figure 2. The illumination invariance preprocessing on an example image from Gardens Point Walking dataset. 

 

Gardens Point Walking
34

 is a dataset of a single route through the Gardens Point Campus, Queensland University of 

Technology, Australia. The route passes both indoors and outdoors, and images are collected with a hand-held iPhone 5, 

in day and night. This dataset is quite suitable for our research. The reasons are as the follows: the images are captured in 

different light conditions and from viewpoints close to those of pedestrians. This dataset contains the scenes not only in 

indoors and outdoors, but also in day and night, which covers most of the illumination changing situations. Some scenes 

even involve large-scale illumination variation in one single image, such as Figure 3. It’s challenging for the network to 

accurately segment the things in the dark part of the image, which is exactly the problem we have to overcome in this 

paper. What’s more, the view of Gardens Point dataset is forward facing from hand-held smart phone, which is similar to 

the view of visually impaired pedestrians. In addition, the routes of day and night are the same, which is convenient and 

fair for comparison between different light conditions. 

We preprocess the ADE20K dataset by using the illumination invariance method, then employ the preprocessed dataset 

to train the network in Section 3.2. We test the network on the preprocessed Gardens Point dataset, and study if the 

robustness across light conditions in indoors and outdoors, day and night has been improved by using this preprocessing 

method. 

 

Figure 3. Examples of the images from the Gardens Point Walking dataset under challenging light conditions. 

 

3.2 Structure and backbone 

The structure of our network is shown in Figure 1. In the encoder of Deeplabv3+ structure, the feature map of the input 

images is extracted by lightweight encoder, then goes through the ASPP to obtain multi-scale features. In the decoder, 

low-level feature is combined with output of encoder together, then restored to original size by an upsampling layer. 

ASPP is used to obtain more levels of features during the pooling. It is consisted of several atrous convolutions
9
 with 

different sampling rates. Atrous convolution with lager rate refers to larger receptive field, which is associated with the 

high-level information, while atrous convolution with smaller rate refers to smaller receptive field and low-level 

information. The combination of multi-scale features offers more information and improves the accuracy. About the 

trade-off between speed and accuracy, in 
9
, cooperated with Xception as encoder, four ASPP layers are applied to 

achieve a high accuracy on Cityscapes dataset. But when the task needs no so much precision but a higher speed or a 

smaller model, it’s useful to reduce the number of ASPP layers, trading a part of precision for better real-time 



 

 
 

 

performance and less computation. In addition, DeepLabv3+ also designed a parameter, output stride (OS) to adjust this 

speed-precision balance. 

3.3 Training dataset 

For the purpose of aiding the VIP, both indoor and outdoor scenes need to be semantically understood in a unified way. 

So ADE20K dataset
30

 is an appropriate dataset, which contains 20210 training images and 2000 validation images 

obtained from indoors and outdoors. 

ADE20K dataset includes 150 classes of objects such as sky and building. However, it’s not necessary to segment all 

these classes for the VIP to provide feedback regarding the most important semantics. They only have to care about the 

classes which are useful or which are potential obstacles. In addition, it’s more difficult to segment so many classes in a 

relatively high accuracy. Therefore, we reduce the category of the dataset by combining some of them together (e.g., 

vehicle and car can be combined together), and adjusting the dataset into 20 classes. Table 1 shows the reclassification of 

our dataset. The bold categories are combined by multiple categories. 

Table 1. The reclassification of ADE20K dataset. 

Number Category Number Category 

1 wall 11 chair 

2 building 12 bus 

3 sky 13 person 

4 floor 14 vehicles 

5 tree 15 door 

6 ceiling 16 table 

7 pavement 17 picture 

8 stair 18 obstacles 

9 window 19 furniture 

10 water 20 others 

 

3.4 Training details 

We train the network on the adjusted ADE20K dataset. Before training, the weights of ShuffleNet V2 are initially loaded 

from the model pre-trained on ImageNet
31

, making the encoder have the basic feature-extracting ability of many kinds of 

objects. Then we train the network on original ADE20K dataset to learn the feature of typical indoor and outdoor object 

classes. Finally, we fine-tune the network on the 20-class ADE20K dataset in order to learn more information under the 

VIP assistance circumstances. One layer of ASPP is added into the encoder to increase the precision.  

DeepLab model zoo provides the pre-trained model with MobileNetV2 as encoder, pre-trained on ImageNet and 

ADE20K. The model’s size is 24.8M and the mIoU (mean Intersection over Union) reaches 32.04% on the validation set 

of ADE20K. Obviously, it’s far from enough for practical application in VIP assistance. Therefore, we train this model 

for more steps and improve its mIoU to make a comparison with ShuffleNet V2 encoder model. 

The learning rate strategy is set up as ‘poly’, which is shown in the formula below: 

_ (1- _ /    ) ^ _lr base lr global step training number of step learning power    (5) 

 

4. EXPERIMENTS AND RESULTS 

Experiments have been completed to prove the effectiveness of preprocessing method on our architecture. We train the 

DeepLab V3+ model with lightweight backbones, using datasets with preprocessing and without preprocessing. 

4.1 Illumination invariance preprocessing 

For the purpose of improving robustness, we preprocess images in 20-class ADE20K dataset with the preprocessing 

method in Section 3.1, and use this dataset to train the network with MobileNetV2 backbone and ShuffleNet V2 

backbone. The model is pre-trained on ImageNet and 150-class ADE20K to learn the basic classification ability. The 



 

 
 

 

training iteration is 100k, with a learning rate of 1e-4. For comparison, training on 20-class ADE20K without 

preprocessing is also carried out with the same training settings. Evaluations on the preprocessed ADE20K validation set 

are presented to investigate the effect of preprocessing. Results are shown in Figure 4. 

On the whole, the mIoU of model trained on illumination invariance preprocessed dataset is not higher than that of 

model without preprocessing. However, observing the details in images of validation dataset, we still find that 

illumination invariance preprocessing has some positive impacts on the segmentation. As shown in Figure 4, the image 

in the first row has 2 glass doors in poor lighting scene, which is hard to be recognized by ordinary model, can be 

segmented using the model trained with preprocessing. The second row shows that details such as small trees are able to 

be segmented with the aid of preprocessing. Preprocessing can also convert unfamiliar categories into those similar to 

them, such as converting snowfield into ground, instead of being considered as background. These details count a lot in 

various different complicated scenes met in realistic task, challenging the robustness of semantic segmentation in terms 

of light, scale and unfamiliar classes. So illumination invariance preprocessing has obvious positive effects on semantic 

segmentation and improves the robustness. 

 

Figure 4.  Semantic segmentation results of ADE20K images by model with MobileNetV2 as backbone. 

The left column shows the input RGB images; the middle column shows the outputs segmented by model trained without 

preprocessing; the right column shows the outputs segmented by model trained with preprocessing. 

 

To examine the performance on practicing situations, we test the preprocessing method on Gardens Point Walking 

dataset. Images in this dataset are segmented respectively by models trained on the preprocessed dataset and the un-

preprocessed dataset. Both models with ShuffleNet V2 backbone and MobileNetV2 backbone are tested. 

The segmentation results are shown in Figure 5 - Figure 7. Gardens Point Walking datasets contains both day and night 

images. It’s clear to see that when the light condition in the different parts of the image differs a lot, it’s hard for original 

models to recognize the objects in the dark parts due to the less illumination. Instead, the preprocessed models can 

segment objects in dark parts and provide more information and details of the image, because the preprocessing method 

reduces the influence of light and reflectance and shows the information about the material of objects. The glass doors in 

dark parts in Figure 5 are clearly segmented by the preprocessed model with MobileNetV2 as the backbone. 



 

 
 

 

 

Figure 5. Semantic segmentation results of day images in Gardens Point dataset by model with MobileNetV2 backbone. 

The left column shows the input RGB images; the middle column shows the outputs segmented by model trained without 

preprocessing; the right column shows the outputs segmented by model trained with preprocessing.  

 

Figure 6. Semantic segmentation results of night images in Gardens Point dataset by model with MobileNetV2 backbone. 

The left column shows the input RGB images; the middle column shows the outputs segmented by model trained without 

preprocessing; the right column shows the outputs segmented by model trained with preprocessing. 

For night situation, it’s extremely hard for most of the original models to do semantic segmentation successfully because 

of the challenging light condition. Some of them are difficult to be recognized even for human eyes. Illumination 

invariance preprocessing can improve the result to a certain extent, providing as much information as possible from the 

night images. In Figure 6, models without preprocessing training almost segment nothing or only segment few object, 

while the model with preprocessing training segments more categories such as tree and sky, although not accurate 

enough. It shows the robustness improvement in night scenes brought by the illumination invariance preprocessing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Semantic segmentation results of night images in Gardens Point dataset by model with ShuffleNet V2 backbone. 

The left column shows the input RGB images; the middle column shows the outputs segmented by model trained without 

preprocessing; the right column shows the outputs segmented by model trained with preprocessing. 



 

 
 

 

Although illumination invariance preprocessing method can offer more information about objects in many scenes, there 

are also several cases where it cannot perform well and reduces the accuracy of the segmentation. 

4.2 Backbone of model for mobile devices 

During the training of DeepLabv3+ model with different backbone, we compare the two kinds of backbones, 

MobileNetV2 and ShuffleNet V2 to find the proper backbone for on lightweight semantic segmentation task on mobile 

devices. 

The model with MobileNetV2 backbone is without ASPP layer, provided and pre-trained on ImageNet and 150-class 

ADE20K by 
9
. The model with ShuffleNet V2 backbone is with one layer of ASPP 

9
 and atrous convolution mentioned 

in 
32

, pre-trained on ImageNet by 
33

. Adding one layer of ASPP is aimed to improve the accuracy without increasing too 

much computation. We pre-train the model with ShuffleNet V2 on the 150-class ADE20K dataset. Then we train both 

models on the adapted 20-class ADE20K dataset for 200k iterations with an original learning rate of 1e-4. 

Table 2. Test on 20-class ADE20K with the input size of 513×513. 

 mIoU(%) Size(MB) FPS 

MobileNetV2 50.9 9.4 64 

ShuffleNet V2 45.8 9.0 83 

 

Frame rate is tested on NVidia 1080Ti GPU. From Table 2, we find that both models are small and fast for running on 

mobile devices. But with the similar size and speed, model with MobileNetV2 has higher mIoU on the 20-class ADE20K. 

So it’s more suitable to use MobileNetV2 as the backbone of DeepLabv3+ model for mobile devices. 

By using Tensorflow Lite (TFLite), the trained model can be converted into TFLite format and put it on the mobile 

phone. The model is useful for both indoors and outdoors to help the VIPs’ scene understanding. 

5. CONCLUSION 

To improve the robustness of semantic scene understanding system by CNN network, we utilize illumination invariance 

preprocessing method and perform the evaluation on Gardens Point Walking dataset. We utilize DeepLabv3+ structure 

with lightweight network as backbone to build the semantic segmentation model which can be developed on mobile 

device.  

In the future, more complicated illumination invariance transformations can be considered to further improve the results. 

To improve accuracy of the model, the main task is on the training of the backbone network. For smaller model on 

mobile devices, model compression, network pruning and knowledge distillation can also be developed on the backbone 

network. 
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