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Abstract: 
It is very difficult for visually impaired people to perceive and avoid obstacles at a distance. To address this 

problem, the unified framework of multiple target detection, recognition and fusion is proposed based on the 

sensor fusion system comprised of a low-power MMW radar and an RGB-D sensor. In this paper, Mask R-

CNN and SSD network are utilized to detect and recognize the objects from color images. The obstacles 

depth information is obtained from the depth images using the MeanShift algorithm. The position and 

velocity information of the multiple target are detected by the millimeter wave radar based on the principle of 

frequency modulated continuous wave. The data fusion based on the Particle Filter obtains more accurate 

state estimation and richer information by fusing the detection results from the color images, depth images 

and radar data compared with using only one sensor. The experiment results show that the data fusion 

enriches the detection results. Meanwhile, the effective detection range is expanded compared to using only 

the RGB-Depth sensor. Moreover, the data fusion results keep high accuracy and stability under diverse range 

and illumination conditions. As a wearable system, the sensor fusion system has the characteristics of 

versatility, portability and cost-effectiveness. 

 

1. Introduction 

According to the data from the World Health 

Organization (WHO), 253 million people are estimated to 

be visually impaired worldwide, and 36 million are blind 1. 

It is very difficult for visually impaired people (VIP) to 

perceive and avoid obstacles at a distance. To address this 

problem, we propose a sensor fusion system which unifies 

the multiple target detection, recognition and fusion 

functions based on the cost-effective RGB-Depth (RGB-

D) sensor and low-power millimeter wave (MMW) radar 

sensor. 

Over the past years, computer vision (CV) has 

undergone a striking improvement especially because of 

the development of the deep learning, which has been an 

enormous benefit for the VIP to access, understand and 

explore surrounding environments 2-4. The development of 

the CV has a close relationship with the stereo vision 

sensor. The RGB-D sensor has also received rising 

attention and been used widely because of its outstanding 

performance 5-7. They provide much more information 

compared the traditional assistive tools, which are able to 

acquire color information and perceive the environment in 

three dimensions at video frame rates. Auxiliary 

approaches based on RGB-D sensors have been 

investigated to help VIP to avoid obstacles 2,8-11. However, 

the RGB-D sensors, including light-coding sensors, time-

of-flight sensors (TOF camera), and stereo cameras, could 

not solve the problems of remote obstacle detection and 

velocity detection perfectly. The detection range of low 

power light-coding sensors is too small in outdoor 

environment, especially in sunny environment 5. The 

measurement results of TOF camera are sensitive to 

ambient light and show poor performance in outdoor 

environments 12. The ranging results of remote objects 

derived from stereo cameras are not accurate, and the 

remote objects without texture are not robustly detected 10. 

Based on these observations, it is difficult for one to 

measure the velocity of object using all these kinds of 

RGB-D sensors. 

In contrast, the range and velocity of the obstacles 

could be calculated at the same time with the help of the 

MMW radar, and the accuracy of the range is very high, 

e.g., several centimeters. The radar detection results are 

rarely influenced by the varying illuminance and severe 

weather 13. Meanwhile, the detection range could be very 

large compared with the RGB-D sensor. Thanks to the 

technological development 14, the MMW radar sensors 

have become small, low-cost and accurate, which makes 

them especially suitable for portable low-power 

applications. Moreover, the single-chip radar sensor has 

already appeared 14. However, the MMW radar has its own 

drawbacks, such as, the azimuth beam with of the MMW 

radar always covers more than several degrees due to the 

limited antenna distributions, which results in a low 

directional resolution compared with the camera. 
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There are various advantages of fusing RGB-D sensor 

and radar sensor 14-18. The fusion mutually complements 

the drawbacks of each sensor and maximizes the capability 

of object detection location and recognition in varying 

environments. The MMW radar provides relatively high 

distance resolution and velocity information of every 

detected object in the scene. Meanwhile, the RGB-D 

sensor provides relatively high spatial resolution, the depth 

images that although suffer from ineffectiveness in some 

conditions, and the color images which is used to achieve 

the object recognition by using a single deep neural 

network, namely Single Shot MultiBox Detector (SSD) 19 

or the object instance segmentation based on the Mask R-

CNN 20. At the same time, the sensor fusion system 

increases the overall system robustness to varying lighting 

conditions. 

In this paper, we propose a unified target detection, 

recognition and fusion framework based on the sensor 

fusion system which is comprised of a low-power MMW 

radar and an RGB-D sensor, as Fig.1 shows. Obstacles in 

the scene are detected by the radar and RGB-D sensor 

simultaneously. The range, velocity and angle information 

of objects are obtained by the MMW radar based on the 

principle of frequency-modulated continuous wave 

(FMCW) 21. The MeanShift 22 algorithm is applied onto 

the depth images to achieve feature extraction, then the 

depth and position information of the obstacles are 

achieved. The objects in the color images are recognized 

by the method of deep learning, herein we adopt the SSD 

or the Mask R-CNN neural network. The effective 

information coming from the radar, color images and depth 

images are fused by the means of Particle Filter 23. After 

that, we have the detailed information about the current 

scene including the objects’ class, position and velocity. 

The non-semantic stereophonic interface is leveraged to 

transfer the detection information to VIP. The sensors 

hardware system will be elaborated in the section 3.1. 

FIG. 1. The proposed multiple target detection, recognition 

and fusion framework for VIP assistance. 

 

In addition to technical aspects, some other factors 

should be considered in the VIP assistance domain, such as 

the price, dimension, weight and energy consumption of 

the assistive system. The main purpose of our research in 

this paper is to design a robust and cost-effective multiple 

object detection recognition and fusion system to help VIP 

perceive and avoid obstacles. 

The remainder of this paper is structured as follows. In 

section 2, the related work is reviewed. Section 3 describes 

the specific methodology, including the sensors hardware, 

the objects detection and recognition principle, the 

calibration between the different sensors and the data 

fusion method. Section 4 presents the experiments results. 

Last, section 5 draws the conclusions and gives an outlook 

to future work. 

2. Related work 

In the literature, some approaches have been proposed 

to help VIP perceive and avoid obstacles at a distance. 

Jindal proposed an obstacle detection method 24 for 

VIP by ground plane removal using speed-up robust 

features and gray level co-occurrence matrix. He presented 

the design of a smart phone based cost-effective system to 

guide VIP to walk safely on the roads by detecting 

obstacles in real-time scenarios. Monocular vision was 

used to capture the video which was pre-processed by 

removing motion blurriness. Then, SURF feature is used 

for matching localized points. Different ROI areas from 

the image are segmented out using an active contour model. 

Finally, the classification of these ROIs as obstacles and 

non-obstacles was done by calculating texture features. 

Kaur 25 presented the development of a real-time 

system based on detection, classification and position 

estimation of objects in an outdoor environment to provide 

the VIP with a voice output-based scene perception. An 

odroid board integrated with an USB camera and laser was 

utilized and the system was low-cost, light weight, simple 

and easily wearable. In this paper, the object detection 

framework was exploited which used a multimodal feature 

fusion-based deep learning architecture using edge, 

multiscale as well as optical flow information. At last, the 

experiments were carried 

out using PASCAL VOC 

2007 dataset, Caltech 

dataset as well as captured 

real-time data. 

Kiuru 26 presented a 

clinical investigation results 

of an assistive device that 

uses radar technology. The 

radar device detected objects 

in the environment and 

conveyed this information to 

the users by the way of 

sound or vibration feedback. 

There were 25 VIP 

participated the two-week period of the investigation 

which included a training session as well as opening and 

closing interviews. At last, the results indicated the device 

improved the ability to perceive environment and 

increased their confidence in independent mobility. 

Yang put forward seizing pixel-wise semantic 27 

segmentation to cover navigation related perception needs  
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in a unified way. They had integrated the approach in a 

wearable navigation system by incorporating robust depth 

segmentation. They also presented a closed-loop field test 

involving real visually-impaired users, demonstrating the 

effectivity and versatility of the assistive framework. 

Aladren 28 proposed a new system for NAVI 

(Navigation assistance for visually impaired). A consumer 

RGB-D camera was chosen which the range and visual 

information were utilized. The depth information was 

enhanced with the long-range visual information. The 

proposed system had been tested on a wide variety of 

scenarios and data sets, giving successful results and 

showing that the system was robust and worked in 

challenging indoor environments. 

There is almost none specialized radar and stereo 

vision fusion system for VIP assistance. Although plenty 

of related work 16,18,29-35 have been done to achieve objects 

detection by fusing the radar and the stereo vision system, 

most of them are part of automobile ADAS.  

Ćesić 16 presented a paper addressed detection and 

tracking of moving objects within the context of ADAS. 

He used a multi-sensor setup consisting of a radar and a 

stereo camera mounted on top of a vehicle. The extended 

Kalman filter on Lie groups was employed to solve the 

problem of data fusion. To solve the multitarget tracking 

problem, the JIPDAF (Joint Integrated Probabilistic Data 

Association Filter) was used. At last, the proposed 

approach was tested on a real-world dataset collected with 

the described multi-sensor setup in urban traffic scenarios. 

Kim 18 developed a firefighting robot that used sensor 

fusion between stereo thermal infrared (IR) vision and 

FMCW radar to locate objects through zero visibility 

smoke in real-time. The stereo IR vision was used to 

obtain 3D information about the scene while the radar 

provided more accurate distances of objects in the field of 

view. The system was sufficiently fast to provide real-time 

matching of objects in the scene allowing for dynamic 

reaction object tracking and locating. 

Kim presented a multiple-object tracking system 31 

whose design was based on multiple Kalman filters 

dealing with observations from a CCD camera and a cheap 

radar module. The integrated probability data association 

(IPDA) was used to achieve the multi-object tracking. At 

last, the proposed complementary system was 

experimentally evaluated through a multi-person tracking 

scenario. 

Compared with these works, the main advantages of 

our system are summarized as follows: 

⚫ Our system unifies the multiple target detection, 

recognition and fusion to provide navigation 

assistance for the VIP. 

⚫ The framework is specially optimized for the VIP 

and achieved based on the low-power MMW 

radar and the RGB-D sensor, which have the 

characteristics of small size, low energy 

consumption and cost-effectiveness. 

⚫ The sensor fusion enhances the overall system 

robustness to varying conditions. 

3. Methodology 

In this section, the system hardware configuration is 

described in detail firstly. Then the MMW radar detection 

principle based on the FMCW, the feature extraction on 

the depth images and the object recognition on the color 

images are introduced. After that, the calibration between 

the radar and RGB-D sensor is accomplished. At last, the 

data fusion is presented. 

3.1. Sensors 

In our sensor fusion system, the Intel RealSense R200 

stereo vision system 2 and the TI short range MMW radar 
14 are utilized, as shown in Fig. 2(a). They are mounted on 

a frame fabricated by 3D printing and their positions are 

fixed. The sensors are closely spaced at about the same 

plane, while the sensor fusion is performed at the object 

detection level 15,36. The current fixed mode is sufficiently 

precise to achieve the data fusion. 

The RealSense R200 is composed of two infrared 

cameras (right and left), an infrared laser projector, a color 

camera and an image processor 5, as illustrated in Fig. 2(b). 

The color camera image resolution is 1920×1080 pixels 

with rolling shutter, which is used to acquire color images. 

The infrared laser projector projects static non-visible 

near-infrared patterns on the scene, then the patterns are 

acquired by the right and left infrared cameras. The depth 

images are generated by the image processor through the 

embedded stereo-matching algorithm. When the active 

projecting has no effect, the depth images could also be 

generated through the passive stereo matching. With the 

principle of active projecting and passive stereo matching, 

the performance of RealSense R200 is excellent under 

indoor and outdoor circumstances 5. The R200 is quite 

suitable for VIP navigation because of its environment 

adaptability, small size and cost-effectiveness. 

 
FIG. 2. The hardware configuration. (a) Experimental 

platform equipped with the RealSense R200 and the TI short 

range radar evaluation board. The size of the R200 and radar 

evaluation board is so small that they are portable, and a credit 
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card is placed nearby for comparison. (b) The RealSense R200 

module is shown without reinforcement frame, it includes two 

infrared cameras (right and left), an infrared laser projector, a 

color camera and an image processor. 

However, the R200 ranging accuracy is reduced when 

the depth exceeds the general detectable range of 650-2100 

mm 5 and the measurement results are influenced by the 

varying environments and weather conditions. On the 

contrary, the range accuracy of the MMW radar based on 

the principle of FMCW is high and the measurements 

results are stable. The TI short range MMW radar based on 

the single radar chip IWR1642 is employed in our 

assistance system. The IWR1642 is an integrated single-

chip MMW sensor based on FMCW radar technology 

capable of operating in the 76 to 81 GHz band with up to 4 

GHz continuous chirp. It is an ideal solution for low-

power, self-monitored, ultra-accurate radar systems in the 

industrial and consumer electronics applications. 

As the VIP generally belong to low income group, it is 

necessary to consider the cost. The price of the R200 

developer kit in the Intel official website is 79USD, and 

the price of R200 module without reinforcement frame 

may be cheaper. The price of the IWR1642 MMW radar 

chip is about 19.97USD in the TI official website. When 

the usage amount is bigger, the price is a possibility of 

decline. Added some other material costs, the total cost of 

the sensor fusion system is about 110USD, which is very 

cheap for that low-income group. 

Before the data fusion, the sensor features and the 

field of view (FOV) also need to be considered. The 

horizontal and the vertical FOV of the color camera is 70 

and 43 respectively. The experiments are carried out at 

the resolution of 640×480 pixels in order to improve the 

efficiency. Meanwhile, in order to fit the color image and 

project the depth information into the corresponding color 

image, the resolution of the depth image is set to be 640×

480. The depth images are obtained using the two infrared 

cameras. And the horizontal and the vertical FOV of the 

infrared camera is 59 and 46 respectively. The color and 

depth images are recorded in the auto-exposure mode of 

the camera. In contrast, the FOV of the MMW radar is 

60 with angular resolution of approximately 15. 

3.2. Objects Detection and Recognition 

In this subsection, we mainly introduce the radar 

detection principle based on the FMCW, the feature 

extraction on the depth images using the MeanShift 

algorithm and the object recognition on the color images 

through the SSD network or the instance segmentation 

based on Mask R-CNN. 

3.2.1. Radar detection principle 

FMCW is a technique that obtains range and velocity 

information from a radar by the way of frequency 

modulating a continuous signal 21. The frequency 

modulation takes many forms, and the linear frequency 

modulation is the most commonly used. The basic 

principle of the sawtooth modulation is illustrated in Fig. 

3. 

 

FIG. 3. The basic principle of the FMCW radar with the sawtooth 

shape modulation. (a) The transmitted and received signal. (b) 

The corresponding beat frequency. (c) The beat signal processing 

flow. 

The transmitted signal is frequency modulated by a 

periodic saw-wave 37. The received signal is similar to the 

transmitted one but subject to the frequency shift (i.e., 

Doppler shift, fd ) and the time delay (i.e.,  ), as illustrated 

in Fig.3(a). The fBW is the modulation bandwidth, and T is 

the modulation period. The frequency difference between 

the transmitted and received signal is called “beat 

frequency”, which carries the range and velocity 

information, as shown in Fig.3(b). For saw-wave 

modulation, the frequency shift and beat frequency are 

coupled and are difficult to separate for multiple objects 34. 

We obtain the range, velocity and angle information of 

different objects by a special processing flow, as shown in 

Fig.3(c). 

We acquire a number of chirps’ beat signal, organize them 

in a matrix, where each column contains a single sweep 

beat signal. This single chirp beat signal is processed using 

a Fast Fourier Transform (FFT) in order to separate the 

different range objects. Fourier transform processing 

results in a frequency spectrum that has separate peaks and 

each peak denotes the presence of an object at a specific 

distance. This processing is called the range-FFT. Then, a 

FFT on the sequence of phasors corresponding to the 

range-FFT peaks outputs the velocity information, which 

is called the Doppler-FFT. Angle estimation is based on 

the phase change in the peak of the range-FFT or Doppler-

FFT because of differential distance from the object to 

each of the antennas, which requires at least 2RX antennas. 

Similarly, a FFT on the sequence of phasors corresponding 

to the 2D-FFT (range-FFT and Doppler-FFT) peaks 

resolves the angle estimation problem. This is called angle-

FFT. 
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After these processing, the range, velocity and angle 

information of objects are obtained. In addition to these 

above issues, some other problems need to be considered, 

such as, the pre-processing of the raw ADC data, the 

constant false alarm rate (CFAR) 38,39, and so on. However, 

these topics are out of scope of this paper and not 

discussed. 

3.2.2. Objects detection on depth images 

Compared with the ordinary digital image processing 

on the color image, this paper achieves the objects 

detection function on the depth image produced by the 

RealSense R200. The obstacles are detected in indoor and 

outside environments, the color images are shown in 

Fig.4(a1-a4), and the depth images and the detection 

results are presented in Fig.4(b1-b4). The detection results 

are indicated using the red bounding box. Herein, we use 

MeanShift algorithm 22 to detect objects with the help of 

depth differences in the depth images and achieve it using 

OpenCV. 

The distance of the detection object is decided by the 

average depth in the red bounding box. The detection 

object coordinates in the pixel coordinate system are the 

center of the red bounding box. Then, we can get the 

specific coordinates in the camera coordinate with the help 

of the camera intrinsic. 

 
FIG. 4. The object detection on the depth images. (a1-a4) The 

color images, the objects are detected in indoor and outdoor 

environments. (b1-b4) The depth images and the detection 

results, the objects are indicated using the red bounding box. 

3.2.3. Object recognition on color images 

In addition to the information from the MMW radar 

and the depth images, we can also achieve the object 

recognition on the color images. As Fig. 5 shows, the 

objects are detected in indoor and outdoor environments, 

while the color images are shown in (a1-a4), and the 

objects recognition results based on the SSD network are 

presented in (b1-b4). The detection results are labeled 

using the bounding box. Similarly, the objects recognition 

results based on the instance segmentation using the Mask 

R-CNN are shown in (c1-c4). 

SSD 19 is simple compared to methods that require 

object proposals because it completely eliminates proposal 

generation and subsequent pixel or feature resampling 

stages and encapsulates all computation in a single 

network. The base network is VGG16 which is used for 

high quality image classification. The convolutional 

feature layers are added to the end of the base network. 

The SSD model is trained on the COCO dataset 40 and is 

able to detect and recognize about 80 categories objects 

which includes the person, bicycle, car, motorcycle. These 

objects are frequently encountered in our daily lives, which 

is a great help to VIP for obstacles perceiving and 

avoiding. The SSD network could achieve the near real-

time object detection without the GPU, for instance, about 

100ms per frame running on a portable laptop (with I5-

6300@2.4GHz, 8G RAM) for 640×480 input.  

Compared with the SSD, instance segmentation based 

on the Mask R-CNN 20 has emerged as an extremely 

powerful approach to detect and identify multiple classes 

of scenes and objects simultaneously. Mask R-CNN 20 

extends Faster R-CNN 41 by adding a branch for predicting 

an object mask in parallel with the existing branch for 

bounding box detection. The Mask R-CNN is also trained 

on the COCO dataset, and it has a better detection result 

compared with the SSD, for instance, in the Fig. 5(b2) and 

(c2), the Mask R-CNN could discover three people in the 

image, but the SSD could only find two. However, the 

Mask R-CNN takes more time than the SSD (about 

2000ms) to process an image on the laptop. The research 

topic of designing pixel-wise instance segmentation to 

assist the visually impaired has not been widely 

investigated. In this paper, we achieve the object 

recognition using the SSD and Mask R-CNN respectively. 

3.3. Calibration 

In multiple sensor system, each sensor obtains data in 

its own coordinate system, which needs to be transformed 

into a unified coordinate system. The depth images are 

generated by the image processor through stereo matching 

between the right and left infrared cameras. Then the R200 

takes the depth images corresponding to the left infrared 

camera. Therefore, we need to calibrate the left infrared 

camera and the radar coordinate, the left infrared camera 

and the color camera respectively. 

In this paper, the standard pinhole model can be used 

for the infrared camera. As shown in Fig. 6, the ( ), ,
c c c

x y z  

and ( ),u v  are the camera coordinate and the image plane 

coordinate respectively. The relationship between them is 

described as equation (1). The 
x

f , 
y

f , 
x

c , and 
y

c  are the 

x , y  direction focal lengths and principal point 

coordinates respectively, and K  is the matrix of intrinsic 

parameters. 

 
0

0

1 0 0 1

c x x c

c c y y c

c c

u x f c x

z v K y f c y

z z

       
       

= =
       
              

  (1) 

By contrast, a target is detected by the radar, its 

coordinate is ( ), , z
r r r

x y , as illustrated in Fig. 6. Because 

the radar is unable to give the pitch angle in the 3D plane, 

the 
r

y  coordinate has no meaningful value. The calibration 

matrix RT
M , which includes the rotation R  and the 
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translation T , between the RGB-D coordinate and the 

radar coordinate, is obtained through: 
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1 1
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c r r

c
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y M z m m m z

z m m m

       
       

= =
       
              

  (2) 

where the calibration matrix RT
M  is made up of 9 

elements. 

To estimate the matrix RT
M , we concurrently 

observed the 3D coordinates of the objects with both 

sensors and estimated the best-fit transformation between 

them using the linear least squares procedure. 

Rotation and translation also exist between the left 

infrared camera and the color camera, as shown in Fig. 

2(b). It is necessary to calibrate them. We calibrate them 

using the MATLAB stereo camera calibrator toolbox, as 

shown in Fig. 7. We acquire a number of checkerboard 

images using the left infrared camera and the color camera 

simultaneously. These two datasets are fed into the stereo 

camera calibrator toolbox, and the corner detection and the 

calibration are automatically completed. Then, the 

calibration results are obtained. 

 
FIG. 6. The RGB-D sensor coordinate and MMW radar 

coordinate 

 
FIG. 7. The calibration between the left infrared camera and the 

color camera using the MATLAB stereo camera calibrator 

toolbox. Camera 1 is the left infrared camera; Camera 2 is the 

color camera. The checkerboard images are acquired 

concurrently, fed into the toolbox and the corner detection is 

successfully accomplished. 

3.4. Data fusion 

The target fusion task from different sensors is 

generally solved by the method of Kalman Filter 31. 

However, the Kalman Filter is unimodal, while the Joint 

Integrated Probabilistic Data Association (JIPDA) 

algorithm 16,31 is needed to track and label this multiple 

target before performing the Kalman Filter, which makes 

the full process very complex and time-consuming. 

Following this rationale, the Particle Filter based on the 

principle of Monte Carlo sampling is used in our 

application to accomplish the multiple object data fusion. 

The Particle Filter is multimodal which is able to track and 

fuse more than one object simultaneously. It is also 

suitable when the multivariate, nonlinear behavior and 

non-Gaussian noise situation appear. 

A particle filter 23,42,43 is a recursive Bayesian state 

estimator that uses discrete particles to approximate the 

posterior distribution of the estimated state. As presented 

in Fig. 8, the particle filter algorithm computes the state 

estimate recursively and involves two main iteration steps 

for continuous estimating state: prediction and correction. 

FIG. 5. The object recognition 

based on the color images in both 

indoor and outdoor environments.  

(a1-a4) The color images.  

(b1-b4) The object recognition 

using the SSD network.  

(c1-c4) The object recognition and 

instance segmentation using the 

Mask R-CNN network. 



7 

The prediction uses the previous state to predict the current 

state based on a given system model. And the correction 

uses the current sensor measurement to correct the state 

estimate. The particle filter also periodically resamples 

which makes the particles in the state space match the 

posterior distribution of the estimated state. The estimated 

state consists of all the state variables. Each particle 

represents a discrete state hypothesis. The set of all 

particles is used to help determine the final state estimate. 

 
FIG. 8. The Particle Filter workflow 

In our sensor fusion system, we use 1000 particles to 

estimate the state. The spatial position and velocity of the 

obstacles are regarded as state variables. Covariance 

matrix is set reasonably according to the radar and RGB-D 

sensor characteristics. We take the first frame radar, depth 

image and color image detection results as the initial 

particle location. Then the next state is evolved by the state 

transition function which is developed and implemented 

based on our system motion model. The weight for the 

state hypotheses based on a given measurement from the 

detection results is given through measurement likelihood 

function. Then the predicted particles are corrected and the 

best estimation is got according to the weight. The 

resampling of the particles is a vital step for continuous 

tracking objects, which selects particles based on the 

current state instead of particle distribution given at 

initialization. We trigger resampling based on the number 

of effective particles when a minimum effective particle 

ratio is reached. At last, the best estimation of the actual 

state is decided by the sum of all particle weights. 

4. Experiments 

In order to test and verify the performance of our 

objects detection, recognition and fusion system, the 

experiments are designed and performed. The sensors, 

which are introduced in the sub-section 2.1, are connected 

to a portable PC (with I5-6300@2.4GHz, 8G RAM) by the 

USB port. The portable PC is mainly responsible for the 

objects detection and recognition on the color images, the 

objects detection on the depth images, accepting the 

MMW radar detection results, the data fusion based on the 

Particle Filter and creating the non-semantic stereophonic 

sound and ordinary semantic speech. We achieve the 

running speed of around 8 FPS when the SSD network is 

taken. Nevertheless, the time consumed on per frame is 

taken more than 2000ms when the Mask R-CNN is used. 

The bone-conducting headphone that does not block VIP’s 

ears from hearing environmental sounds is applied, which 

is connected to the PC by the Bluetooth. The non-semantic 

stereophonic interface 5 is utilized to achieve the multiple 

obstacle warning simultaneously, which makes VIP 

perceive the surrounding environments quickly. In the 

actual assistance process, the RGB-D and MMW radar 

sensors are hung from the user’s neck, the Bluetooth bone 

conduction headphones are worn by the users and the 

portable PC is put in the backpack, as the Fig. 9 shown. 

 
FIG. 9. The sensors are hung from the user’s neck. (a) The side 

view. (b) The front view. The Bluetooth bone conduction 

headphones are worn on the head, and the portable PC is put in 

the backpack. The device is light and easy to wear by the user. 

4.1. Field tests 

The field tests are designed and performed with 

different surroundings, as shown in Fig. 10. The color 

images and the recognition results using the Mask R-CNN 

are presented in a1-a7, the targets are detected with 

different surroundings. The detection and recognition 

results by the SSD network are shown in b1-b7 

simultaneously. The depth images and the detection results 

based on the MeanShift algorithm are described in c1-c7. 

The detection results are represented by the red bounding 

boxes. The MMW radar detection results are shown in d1-

d7. At last, the data fusion results, which is based on the 

method of the Particle Filter, are described in e1-e7. The 

position information of the detected objects is represented 

by the mean value of these particles. 

In the scenario 1, a person stands in the corridor, 

which could be detected and recognized in the color 

images using the Mask R-CNN and SSD, as the Fig. 10 

(a1) and (b1) illustrated. The obstacles at most cases could 

be detected in the depth images when the illumination and 

distance are suitable, as shown in (c1). Meanwhile, the 



8 

person is detected by the MMW radar, as (d1) said. At last, 

these detected results, which come from the color images, 

the depth images and the radar, are put into the Particle 

Filter. After several iterations, the position of the observed 

person is confirmed, as shown in (e1). Then we could 

know the position, velocity and category of the detected 

object. Compared with the single RGB-D sensor or the 

single MMW radar, the data fusion enriches the detection 

results. 

FIG. 10. The field tests are performed in indoor and 

outdoor. (a1-a7) The objects are detected and recognized in the 

color images using the Mask R-CNN. (b1-b7) The objects are 

detected and recognized in the color images using the SSD 

network. (c1-c7) The depth images and the detection results, the 

detection results are represented by the red bounding box. (d1-d7) 

The radar detection results. (e1-e7) The data fusion using the 

Particle Filter, the position information is represented by the 

mean value of these particles. 
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Similarly, two people appear in the corridor, one near 

and the other far. They are both detected and recognized in 

color image, as shown in (a2) and (b2). Since the effective 

detection range of the RealSense R200 is only about 0.6m 

to several meters, the near one is detected in depth image, 

but the other one is not, as presented in (c2). By contrast, 

the detection range of this low-power MMW radar is 

longer, about 15m for a person and 80m for a car, and the 

results are stable. Then they are both detected by the radar, 

as shown in (d2). At last, the data fusion results are 

presented in (e2). In this regard, the effective detection 

range of the fusion system has been significantly 

expanded. 

Meanwhile, similar experiments are also conducted in 

outdoor environments. In the scenario 3 and 4, one or 

multiple person stands in a courtyard, as Fig. 10 (a3), (b3), 

(a4) and (b4) show. They are all detected and recognized 

successfully on the color images based on the method of 

Mask R-CNN or SSD network. In the scenario 3, the 

person appears at about 5.5 meters away. He is not 

detected in the depth image because of the limited 

perception range of the RGB-D sensor, as described in Fig. 

10 (c3). In contrast, the nearer person in the scenario 4 is 

found in the depth image, as said in (c4). But the farther 

one disappears in the depth image. However, all these 

targets are correctly detected by the radar, as shown in (d3) 

and (d4). The data fusion results based on the Particle 

Filter are presented in the (e3) and (e4) respectively. 

Compared with the single RGB-D sensor, the data fusion 

improves the robustness of the prototype. 

In the scenario 5, two cars are parked on the roadside 

at afternoon, and they are successfully detected and 

recognized on the color images, as shown in (a5) and (b5). 

They are not found in the depth image because of the 

limited perception range of the RGB-D sensor, as 

described in (c5). Nevertheless, the MMW radar detection 

result is stable, as shown in (d5). However, the angle 

resolution of the MMW radar is limited which makes these 

two cars not distinguished. With the help of high-

resolution color images, we could know the targets’ 

number and their categories. Compared with the single 

RGB-D sensor or the single MMW radar, the data fusion 

enriches the detection results, expand the effective 

detection range and improves the robustness of the 

prototype. 

In some special extreme environments, the MMW 

radar provides the last security guarantees. For instance, a 

car is parked on the roadside at nightfall, as shown in Fig. 

10 (a6) and (b6). The car is not found in the color images 

because of the illumination. It is also not found in the 

depth image because the quality of the depth image 

declines when the lights dim or the perception distance 

exceeds the effective detection range of the RealSense 

R200. The MMW radar detection results, by contrast, are 

stable. While the last data fusion results are shown in (e6), 

which reveals the effectiveness of our approach even with 

low illumination. In this sense, our fusion system enhances 

the robustness of obstacle detection across different 

illumination conditions. 

In some complex environments, three or more objects 

are detected. For example, in the scenario 7, three cars and 

two people appear near the roadside, as Fig. 10 (a7) and 

(b7) depicted. All of the cars and people are completely 

detected on the color images using the Mask R-CNN or 

SSD network. Because all the targets are out of the 

effective perception range of the RGB-D sensor, they are 

not detected on the depth image, as shown in Fig. 10 (c7). 

The MMW radar only detects four objects because of the 

low directional resolution. And the detection results are 

presented in (d7). In contrast, the targets’ number and their 

categories could be confirmed on the high-resolution color 

images. At last, the data fusion results based on the 

Particle Filter are described in (e7). There are two pairs of 

objects, and the two objects of each pair are close to each 

other, which makes only two cluster particles generated in 

the data fusion results. Although the performance of the 

sensor fusion system has a certain degradation in some 

complex environments, it is still able to provide some 

assistance and help the VIP perceive and avoid obstacles at 

a distance. 

The field tests show the effective detection range is 

significantly expanded with the help of the sensor fusion. 

Meanwhile, the more accurate state estimation, the richer 

information and more robust perform under diverse 

illumination conditions are obtained compared with the 

single sensor. 

4.2. The performance evaluation at different 
ranges 

In order to verify the performance of our sensor 

fusion system at different ranges, the experiments are 

designed and performed. As shown in Fig. 11, the car is 

placed at roadside. We measure the different distances 

between the car and our system, and the distance of 2m, 

4m, 8m, 15m, 20m, 30m, 40m and 50m are selected. The 

50-meter leather tape box ruler is placed on the ground to 

get the accurate ground truth range information. 

The car is successfully detected and recognized on the 

color images when the distance is 2m, 4m, 8m, 15m and 

20m, as shown in Fig. 11 (a1-a5) and (b1-b5). However, 

the car is detected on the depth images only the distance is 

about 2m and 4m. In spite of being detectable, only a small 

part of this car is correctly detected on the depth images. 

The depth images lack effective detection information 

when the distance exceeds 4m. By contrast, the MMW 

radar still keeps accurate range perception ability, as 

shown in c1-c5. Because of the limited angle resolution, 

the MMW radar has no ability to distinguish the two close 

cars. The color images detected results exactly provide this 

information, i.e., the number and the category. Because the 

two cars are too close, they are not separated in the last 

data fusion results, which are described in e1-e5. 

As the distance increases, the car imaging area 

becomes small. The error of object detection and 

recognition in the color images starts to appear. As shown 

in b6 and b7, the car in the middle position is lost because 

of the SSD network lacking robustness. In contrast, the 
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object detection and recognition based on the Mask R-

CNN solves this problem very well in spite of taking more 

time, as described in a6 and a7. Compared to the object 

detection on color images, the radar detection results keep 

still stable when the distance varies. In summary, we 

obtain the objects category, position and velocity 

information through the data fusion based on the RGB-D 

sensor and the MMW radar. 
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FIG. 11. The data fusion performance evaluation at 

different ranges using the Particle Filter. (a1-a8) The color 

images, the objects are detected and recognized using the Mask 

R-CNN. (b1-b8) The color images, the objects are detected and 

recognized using the SSD network. (c1-c8) The depth images and 

the detection results, the detection results are represented by the 

red bounding box. (d1-d8) The radar detection results. (e1-e8) 

The data fusion using the Particle Filter, the position information 

is represented by the mean value of these particles. 

 

At last, the RGB-D sensor detection results, the 

MMW radar detection results, the data fusion results and 

the corresponding ground truth at different ranges are 

listed in the Table 1. It can be seen that the distance 

measurement accuracy is high and keeps stable at different 

ranges with the help of RGB-D sensor and MMW radar. 

Moreover, the objects at a long distance could be detected 

accurately with the help of this sensor fusion system.  

 

TABLE I. The detection and fusion results at different ranges 

Scene a1 a2 a3 a4 a5 a6 a7 a8 

RGB-D(m) 1.978 3.859 - - - - - - 

Radar (m) 2.093 4.042 7.935 15.015 20.142 30.029 39.917 49.797 

Fusion Data (m) 2.018 4.023 7.958 14.987 20.208 29.832 40.124 49.985 

Ground Truth (m) 2 4 8 15 20 30 40 50 

Fusion Deviation (m) 0.018 0.023 -0.042 -0.013 0.208 -0.168 0.124 -0.015 

Relative Error (%) 0.9 0.575 0.525 0.087 1.04 0.56 0.31 0.03 

5. Conclusion 

In this paper, we present a unified target detection, 

recognition and fusion framework based on the sensor 

fusion system which is comprised of a low-power MMW 

radar and an RGB-D sensor. The experiment results show 

the object detection and recognition on the color images is 

achieved based on the Mask R-CNN or the SSD network. 

The feature extraction on the depth image is achieved 

using the MeanShift algorithm, and the depth and position 

information of the obstacles is obtained. The field tests 

show the different ranges and angles of the objects are 

calculated by the MMW radar based on the principle of 

FMCW. With the help of the data fusion, we have 

achieved more accurate state estimation and obtained 

richer information of the detected targets. Moreover, the 

measurement results are stable under diverse illumination 

conditions. As a wearable system, the sensor fusion system 

has the characteristics of versatility, portability and cost-

effectiveness, which is very suitable for blind navigation 

application. Simultaneously, this system could be flexibly 

applied in the field of self-driving, unmanned aerial 

vehicle (UAV), robotics, surveillance and defence. 

For future work, we plan to achieve the data fusion 

algorithm on the Field Programmable Gate Array (FPGA) 

chip. This greatly reduces the size and weight of the 

system, which is more portable during navigation. 
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