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Abstract— Intersection navigation comprises one of the major
ingredient of Intelligent Transportation Systems (ITS) for Visu-
ally Impaired Pedestrians (VIP), who are the most vulnerable
road users that should be protected with a high priority in
metropolitan areas. Robotic vision-based assistive technologies
sprung up over the past few years, which focused on specific
scene objects using monocular detectors or depth sensors. These
separate approaches achieved remarkable results with relatively
low processing time, and enhanced the intersection perception
to a large extent. However, running all detectors jointly incurs
a long latency and becomes computationally prohibitive on
wearable embedded systems. In this paper, we put forward
to seize pixel-wise semantic segmentation to cover navigation-
related perception needs in a unified way. This is not only
critical to perceive crosswalk position (where to cross roads),
traffic light signal (when to cross roads), but also to analyze
the states of other pedestrians and vehicles (whether safe to
cross roads). The core of our unification proposal is a deep
architecture, aimed to attain efficient semantic understanding.
A comprehensive set of experiments demonstrate the qualified
accuracy over state-of-art algorithms while maintaining high
inference speed on a real-world navigation assistance system.

I. INTRODUCTION

Ambient smart living and Intelligent Transportation Sys-
tems (ITS) are becoming tightly intertwined [1] to enhance
road safety assisted with robotic vision [2]. Intersections in
complex metropolitan areas are one of the most hazardous
where many accidents occur between turning-vehicles and
pedestrians [3]. Rich functionalities have been included
in mass-produced vehicles and transportation infrastruc-
tures [4], together with mobility aid for wheelchairs and
individual travelers. In spite of the significant contributions
of all these advances, there is still a long way to go towards
the utopia of all traffic participants.

Arguably, most of the time ITS support able-bodied users
to safely and efficiently use a transport system. Problems
emerge when the user has some kind of disability, e.g., visual
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Fig. 1. Two approaches of perception in navigational assistance for visually
impaired pedestrians at metropolitan intersections.

impairments. Precisely at urban intersections and round-
abouts, Visually Impaired Pedestrians (VIP) encounter a di-
verse range of navigational challenges. There is a necessity to
expand the coverage of assistance to help VIP crossing roads
independently, which will also contribute to the improve-
ments of transportation. Towards this end, a wide spectrum
of tasks are concerned (see Fig. 1), with a vital part of vision-
based proposals focused on crosswalk detection [3][5][6]
and pedestrian crossing light detection [7][8]. In order to
reduce traffic accidents during self-navigation, proof-of-
concepts were also investigated to equip infrastructure-based
pedestrian tracking [4] at signalized crosswalks, along with
integration of wearable radar [9] to warn against collisions
with vehicles, taking into consideration that fast-approaching
objects are response-time critical.

As a matter of fact, each one of these navigational tasks
has been well resolved through its respective solutions. De-
spite the impressive strides towards higher mobility of VIP, a
majority of processing pursues the sequential pipeline instead
of a unified way, separately detecting different assistance-
related scene elements. Thereby, it is computationally inten-
sive to run different detectors together and the processing
latency makes it infeasible within road crossing context.
Illustratively, one of a pioneering work [7] recognizes traffic
lights at about 5-10FPS, while delivering feedback in a few
seconds. It sacrificed real-time performance by exploring
temporal analysis for safety reasons. To locate crosswalks for
transportation management system, [3] takes about 1.43s per
frame based on MSER and ERANSAC. These approaches
depend on further optimization to provide assistance at
normal walking speed. A more recent example could be
the wearable system reported in [6][8], which detects zebra



crosswalks at about 15-30FPS, with additional 47ms to detect
pedestrian crossing lights, let alone other processing compo-
nents [10] that make it sub-optimal for real-time assistance
on embedded platforms. In this sense, it is desirable to
juggle multiple tasks simultaneously and coordinate all of
the perception needs efficiently.

In order to close the gap, we derive insight from the
field of autonomous driving, another safety-critical task
that faces similar perception challenges, whose impressive
developments could be leveraged for assistive intersection
navigation given the following facts:

• Full pixel-wise semantic segmentation, as one of the
challenging vision tasks, aims to partition an image into
several coherent semantically meaningful parts. Fueled
by deep learning, it has grown as the key enabler to
cover navigation-related detection tasks in an end-to-
end unified manner [11].

• An even higher potency of Convolutional Neural Net-
works (CNNs) arguably lies in the capacity to learn
contexts and inter-relations. In our application domain,
pedestrian crossing lights appearing above zebra cross-
walks is one common property, which is contextual
information to be exploited despite the inherent variance
in shapes, sizes and textures.

• Large-scale scene parsing datasets feature a high vari-
ability in capturing viewpoints (from road, sidewalks,
and off-road) [12], which offer a broad range of images
with assistance-related intersection elements, supposing
essential prerequisites to aid perception in visually
impaired individuals.

Inspired by the synergy, we propose to seize pixel-wise
semantic segmentation to provide a comprehensive set of
assistive awareness, including crosswalk position (where
to cross roads), traffic light signal (when to cross roads),
as well as pedestrian and vehicle state (whether safe to
cross roads). This paper considerably extends the previous
work on traversability awareness [10] by including novel
contributions and results that reside in the following aspects:

• A unification of intersection perception with regard to
crosswalk detection, traffic light detection, pedestrian
and vehicle detection.

• A real-time semantic segmentation network to learn
both global scene contexts and local textures without
imposing any assumptions.

• A real-world navigational assistance framework on a
wearable prototype for visually impaired individuals.

• A comprehensive set of experiments on a large-scale
scene parsing dataset [12] and two real-world egocentric
intersection datasets [6][8], by comparing with tradi-
tional algorithms and state-of-art networks.

The remainder of this paper is structured as follows.
Section II reviews related work that has addressed both
crosswalk detection, pedestrian traffic light detection for
assistive navigation. In Section III, the proposed framework
is elaborated in terms of the wearable navigation assistance
system and the real-time semantic segmentation architecture.

In Section IV, the approach is evaluated and discussed as for
real-time/real-world performance by comparing to the most
relevant approaches. Section V draws the conclusions and
offers an outlook into what are expected in future work.

II. RELATED WORK

A large part of researches were dedicated to detecting
merely one of landmarks at intersections, such as zebra cross-
walks [3][5][6] or pedestrian crossing lights [7][8]. Compara-
tively, only a fraction of works have put efforts into the incor-
poration of crosswalk detection with crossing light detection.
One of the earliest intersection assistance algorithm was pro-
posed with analytic image processing [13]. It detects crossing
lights in near-view images, where the light covers a dominant
portion and no crosswalk exists, hence these two elements
were not detected simultaneously. A robotic guide dog [14]
was assembled with template matching-based crossing light
detection and Hough transform-based crosswalk detection.
However, this system was simply tested in one scenario, for-
getting to guarantee the robustness across unseen situations.
Another similar algorithm for intersection assistance based
on RGB-D images [15] was specially designed to detect
US crossing lights. In our application domain towards real-
world assistance, the reliability should be ensured against
the variety of street configurations, illumination changes, and
even across continents. Pixel-wise semantic segmentation
has come into view as an extremely powerful approach to
provide a reliable generalization capability, as well as to
detect multi classes of scenes simultaneously. However, the
research topic to leverage semantic segmentation to assist
VIP has not been investigated in complex traffic intersec-
tions/roundabouts. Our work aims to fill this gap.

III. APPROACH

A. Wearable assistive intersection navigation system

In this work, the main motivation is to design a prototype
that should be wearable without hurting the self-esteem
of VIP. With this target in mind, we follow the trend of
using head-mounted glasses [10] to acquire environmental
information and interact with VIP. As worn by the user at
an urban intersection in Fig. 2, the pair of smart glasses is
comprised of a RGB-D sensor of RealSense R200 and a set
of bone conducting earphones.

This pair of smart glasses captures real-time RGB-D
streams and transfers them to the processor, while the RGB
images are fed to the network for semantic segmentation.
As for the depth images, which are acquired with the
combination of active speckle projecting and passive stereo
matching, support a higher-level robust obstacle avoidance
as previously presented in [10]. The crosswalk location,
crossing light signal, and pedestrian/vehicle states are de-
termined by directly using the semantic segmentation output
as the base for assistive awareness, with which feedback are
delivered through acoustic bone conduction.



Fig. 2. Overview of the wearable navigation assistance system.

B. Real-time semantic segmentation architecture

Up until very recently, pixel-wise semantic segmentation
was not deployable in terms of speed. However, a frac-
tion of networks has focused on the efficiency by propos-
ing architectures that could reach near real-time segmen-
tation [11][16][17]. These advances have made possible
the utilization of full scene segmentation in time-critical
cases like blind assistance. To leverage the success of
segmenting a variety of scenes and maintaining the effi-
ciency, we design the architecture according to the SegNet-
based encoder-decoder architectures like ENet [16] and our
previous ERFNet [11]. In FCN-like architectures, feature
maps from different layers need to be fused to generate a
fine-grained output. Our approach contrarily uses a more
sequential architecture based on an encoder producing down-
sampled feature maps and a subsequent decoder that up-
samples the feature maps to match input resolution. The
integrated architecture can be also visualized in our work [2]
with groups of collaborators whose goal is to create a unified
terrain perception system. In this line, sequential/hierarchical
architectures with spatially factorized convolution have been
open-sourced at https://github.com/elnino9ykl/ERF-PSPNet.

For robust segmentation of intersection-centered scene
elements, we attach a pyramidal pooling-based decoder [18],
with the purpose to collect more contextual information
while minimizing the sacrifices of learning textures. Global
context information is of cardinal significance for naviga-
tional assistance at urban intersections. To detail this, two
common issues are worthwhile to remark for context-critical
blind assistance. First, context relationship is universal and
important especially for complex scene understanding. If the
network mis-predicts crosswalks on sidewalks, VIP would be
left vulnerable in the dynamic environments. The common
knowledge should be learned by the data-driven approach
that crosswalks are seldom over sidewalks. Second, when
crossing the roads, the scene elements such as crosswalks,
crossing lights, pedestrians and vehicles are with arbitrary
sizes from the sensor perspective. Navigation assistance
system should pay much attention to different sub-regions
that contain inconspicuous-category stuff. These risks could
be mitigated by exploiting more context and learning more
relationship between categories. Bearing the goal of helping
VIP in mind, local and global context information are carried
from the pyramidally harvested representations at different
locations of the encoded featuremap with varied sizes. In

summary, our ERF-PSPNet is built up through convolution
factorization and pyramid representation allowing to learn
high-level features hierarchically.

IV. EXPERIMENTS

Experiments setup. Datasets for evaluation include the
challenging large-scale Mapillary dataset [12], and two real-
world egocentric datasets [6][8] collected at urban inter-
sections in Hangzhou, China and in Trento, Italy. A vital
part of the images are captured by the wearable navigation
assistance system, while others from smart phones share
the same image style and quality. The metrics reported in
this paper correspond to Intersection-over-Union (IoU) and
Pixel-wise Accuracy (P-A) that are prevailing in semantic
segmentation challenges, and two recall values in terms of
stripe-level for crosswalk detection and instance-level for
pedestrian crossing light detection.

Real-time performance. The total computation time of a
single frame at the resolution of 320×240 is 13ms, mostly on
semantic segmentation. In this sense, the computation cost
is saved to maintain a reasonably qualified refresh-rate of
76.9FPS on a processor with a single cost-effective GPU
GTX 1050Ti. This inference time demonstrates that it is able
to run our approach in real time, while retaining additional
time for acoustic feedback [10]. In addition, on an embedded
GPU Tegra TX1 (Jetson TX1) that enables higher portability
while consuming less than 10 Watts at full load, our approach
achieves approximately 22.0FPS. When comparing the real-
time performance with traditional detectors that focused on
specific objects, our approach is the fastest as displayed in
Table I, along with the forward passing time of state-of-art
efficient architectures. At 320×240, our approach is slightly
faster than ENet [16], even though LinkNet [17] is not able
to be tested due to the inconsistent tensor sizes for down-
sampling. At 640×480, our approach is also super fast. Still,
our network achieves significantly higher accuracy than ENet
and LinkNet, which will be detailed in following subsections.

Training setup. The challenging Mapillary Vistas
dataset [12] is chosen as it consists of many navigation-
related and intersection-centered object classes, spanning a
broad range of outdoor scenes on different roadways or side-
walks, which corresponds to the usage scenario of the smart
glasses. In addition, it attains vast geographic coverage, con-
taining images from different continents. This is important to
enhance reliability because zebra crosswalks and pedestrian
crossing lights are not exactly the same in different countries.



TABLE I
REAL-TIME PERFORMANCE ANALYSIS.

Approach Processing time
Crosswalk detection

MSER and ERANSAC [3] 1.43s on Intel Core i7-3770
Bipolarity-based algorithm [5] 0.73s on Intel Core i7-3770

AECA algorithm [6] 33-67ms on Intel Atom x5-Z8500
Pedestrian crossing light detection

Traffic light detection pipeline [7] 100-200ms on Nokia N95
PCL algorithm [8] 47ms on Intel Atom x5-Z8500

Semantic segmentation
Networks are tested on a cost-effective GPU GTX1050Ti

ENet [16]: 15ms at 320×240, 24ms at 640×480
LinkNet [17]: Unable to be evaluated at 320×240, 32ms at 640×480

Our ERF-PSPNet: 13ms at 320×240, 34ms at 640×480

In total, we have 18000 images for training regardless of
whether it contains crosswalks/crossing lights in the desired
intersection/roundabout scenarios or not. Additionally, pixel-
scale annotations of 2000 images are available for validation.
Sharing the same spirit of past work [2] to unify awareness
of the scenes that VIP care the most during self-navigation,
we use 27 classes for training, including the most frequent
classes and some assistance-related classes. These 27 classes
cover 96.3% of labeled pixels, which still allows to fulfill
semantic scene parsing. To robustify the model against the
varied types of images from real world, a group of data
augmentations are performed including horizontally flipping
with a 50% chance, jointly use of random cropping and
scaling to resize the cropped regions into 320×240 input
images. Random rotation by sampling distributions from the
ranges [−20o, 20o] is performed for wearable consideration.
Color jittering from the ranges [-0.2, 0.2] for hue, [0.8,
1.2] for brightness, saturation and contrast are also applied
to attain imaging invariance and robustness. Our model is
based on the pre-trained encoder and training scheme in past
work [2] while focal loss is used as the criterion.

Segmentation accuracy. The accuracy of semantic seg-
mentation is firstly evaluated on the challenging Mapillary
dataset [12] by comparing the proposed ERF-PSPNet with
deep neural networks in the state of the art including
ENet [16] and LinkNet [17]. Table II(a) details the accuracy
of 11 frequent navigation-related classes and the mean IoU
values. It could be told that the accuracy of most classes
obtained with the proposed ERF-PSPNet exceeds the existing
architectures that are also designed for real-time applications.
Our architecture has the ability to collect rich contextual
information without major sacrifice of learning from textures.
Accordingly, only the accuracy of sky is slightly lower
than LinkNet, while most important classes for intersection
navigation are apparently higher including traffic light, car,
person and crosswalk. For other less frequent vehicles/traffic
participants, our approach also yields decent accuracy, e.g.,
truck (58.12%), bicycle (36.22%), motorcycle (39.79%), bus
(61.35%) and rider (40.50%).

Real-world crosswalk detection. The crosswalk detec-
tion is evaluated on the Crosswalk Navigation dataset [6],
which has 191 images with pixel-wise ground truth
across 9 different scenarios for testing available at
http://wangkaiwei.org/projecteg.html. This allows us to com-
pare our approach with traditional approaches including

the bipolarity-based algorithm [5], Adaptive Extraction and
Consistency Analysis (AECA) algorithm [6], as well as state-
of-art networks including ENet and LinkNet. Considering the
sharp contrast in the boundaries of black-white stripes, [5]
detected crosswalks by analyzing bipolarity of gray-scale
histogram. However, the performance of the algorithm is
sensitive to the pre-determined segmenting size of patches.
Therefore, the crosswalks at far distances fail to be detected
(see Fig. 3d), resulting a low accuracy and stripe-level
recall as observed in Table II(b). Comparatively, AECA
only extracts bright stripes of zebra crosswalks, thus its
pixel-wise accuracy and IoU are unable to compare fairly
with other approaches. It claimed to surpass bipolarity-
based algorithm in terms of frame-level precision and recall.
However, it is noticeable that not all of crosswalk stripes are
included in detection results as displayed in Fig. 3e. Due to
the incomplete detection, the close crosswalk stripes whose
features are less consistent with most stripes may miss, which
results in delivering confusing feedback as pointed out in [6].

As far as the deep learning based approaches are con-
cerned, they have the crucial advantages by exploiting a
significant amount of data, thus eliminating the dependen-
cies on assumptions. Intriguingly, although LinkNet exceeds
ENet on Mapillary dataset, only the recall is higher than
ENet on the real-world dataset. ENet applied multiple di-
lated convolution by taking a wider context into account,
while LinkNet only performed fixed ones. Accordingly, ENet
outperforms LinkNet in terms of IoU, because close-range
stripes’ sizes vary greatly when crossing the roads, which
requires the model to learn rich contextual information and
these stripes cover most pixels. However, LinkNet has larger
capacity and it surpasses ENet in terms of recall, which
are largely contributed by relatively farther stripes. Still,
our ERF-PSPNet excels on both metrics, although in some
scenarios the pixel-wise accuracy are slightly lower than
ENet/LinkNet because they sometimes tend to over-segment
crosswalks, e.g., classify general road markings as zebra
crosswalks, leading to inferior real-world performance. Fig.
3 exhibits the montage of detection results generated by our
approach, bipolarity-based algorithm and AECA approach.
Qualitatively, our approach yields longer and more consis-
tent segmentation which will definitely benefit the assistive
awareness at urban intersections.

Real-world pedestrian crossing light detection. For
another critical task, pedestrian crossing light detection is
evaluated on the real-world dataset [8]. This dataset contains
several video clips captured in China (4867 images) and Italy
(12913 images). A real-time PCL algorithm [8] detects lights
based on HOG and SVM. It only segments bounding-box
pedestrian region of the lights, relying on the HOG descriptor
to classify candidates. In contrast, our approach detects
not only pedestrian crossing lights but also other kinds of
traffic lights, which arguably supports more comprehensive
upper-level analysis and assistance. In order to facilitate
fair comparison, we collected the instance-level recall as
itemized in Table III, which is a very important parameter
for time-critical blind assistance, relaxing the requirements



TABLE II
ACCURACY ANALYSIS.
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ENet [16] 24.97% 71.16% 82.54% 57.20% 32.95% 75.97% 32.60% 96.39% 81.13% 52.85% 50.99% 59.89% 33.59%
LinkNet [17] 34.55% 74.41% 83.95% 58.22% 37.06% 78.16% 42.27% 97.16% 83.25% 54.88% 51.87% 63.25% 39.39%
ERF-PSPNet 37.06% 75.92% 85.92% 65.14% 42.92% 80.52% 49.93% 96.47% 84.06% 60.09% 59.97% 67.09% 48.85%

(a) On Mapillary dataset [12] using Intersection-over-Union (IoU).
“Mean-11”: mean IoU value of 11 navigation-related classes, “Mean-27”: mean IoU value of all 27 classes used for training.

Scenario Bipolarity-based [5] AECA [6] ENet [16] LinkNet [17] Our approach
IoU P-A Recall Recall IoU P-A Recall IoU P-A Recall IoU P-A Recall

Scenario 1 64.48% 67.99% 45.00% 36.52% 87.24% 94.76% 75.00% 74.83% 96.59% 78.04% 88.87% 95.82% 91.52%
Scenario 2 33.05% 34.37% 16.78% 33.56% 75.70% 86.36% 69.13% 71.57% 89.80% 78.52% 81.14% 94.02% 85.23%
Scenario 3 15.83% 17.73% 17.19% 33.26% 69.87% 85.11% 70.31% 54.63% 86.11% 72.54% 80.15% 90.39% 87.72%
Scenario 4 9.16% 9.44% 9.09% 55.84% 66.07% 94.07% 100.0% 65.24% 86.78% 98.70% 77.62% 93.25% 100.0%
Scenario 5 0.00% 0.00% 0.00% 67.74% 42.05% 42.50% 48.39% 55.58% 75.82% 77.42% 70.60% 73.56% 90.32%
Scenario 6 52.94% 69.37% 63.64% 50.00% 57.01% 58.19% 69.09% 35.25% 52.53% 72.73% 81.52% 85.43% 98.18%
Scenario 7 25.96% 26.95% 27.34% 57.55% 72.14% 76.75% 66.91% 69.92% 87.59% 84.89% 79.90% 84.05% 92.09%
Scenario 8 0.00% 0.00% 0.00% 29.41% 88.97% 96.64% 64.71% 87.34% 96.67% 88.24% 89.16% 97.97% 88.24%
Scenario 9 73.92% 83.30% 95.63% 58.52% 64.64% 98.35% 98.25% 67.04% 93.93% 94.32% 81.02% 96.59% 99.56%

In total 50.38% 55.87% 38.73% 42.47% 70.86% 88.70% 75.90% 64.08% 88.63% 80.12% 82.50% 92.83% 91.87%
(b) On real-world Crosswalk Navigation dataset [6]. “P-A”: Pixel-wise Accuracy.

(a) RGB image (b) Segmented masks (c) Annotation (d) Bipolarity-based (e) AECA algorithm (f) Our approach
Fig. 3. Qualitative examples of the zebra crosswalk detection on real-world images produced by our approach compared with ground-truth annotation,
bipolarity-based approach [5] and AECA algorithm [6]. From left to right: (a) RGB image, (b) Segmented masks of ERF-PSPNet, (c) Annotation, (d)
Bipolarity-based, (e) AECA algorithm, (f) Our approach.

TABLE III
INSTANCE-LEVEL RECALL

ON REAL-WORLD PEDESTRIAN CROSSING LIGHTS DATASET [8].
Approach China dataset Italy dataset In total

PCL algorithm [8] 46.77% 64.71% 59.53%
ENet [16] 51.61% 83.67% 74.42%

LinkNet [17] 64.52% 93.84% 82.33%
Our approach 75.81% 96.08% 89.77%

of temporal analysis that hinders real-time feedback. We
counted the pedestrian traffic lights for images at an interval
of 100 frames of the datasets, having 62 lights in 48 frames
of the China dataset and 153 lights in 129 frames of the

Italy dataset. Numerically, the recall of our approach is
the highest among these real-time algorithms. As far as
the color signal is concerned, our approach achieves decent
precision of more than 90% for red lights and more than
95% for green lights by setting thresholds in HSV space,
given that the red and green PCL gather around specific
values of Hue and Value [8]. To further improve the precision
in future time, we aim to implement illumination-invariant
image pre-transformation, as well as to incorporate near-
infrared spectral information. It is also worthwhile to note



(a) RGB image (b) Segmented masks (c) PCL algorithm (d) ENet (e) LinkNet (f) Our approach
Fig. 4. Qualitative examples of the pedestrian crossing lights detection on real-world image produced by our approach compared with ground-truth
annotation, PCL algorithm [8], ENet [16] and LinkNet [17]. From left to right: (a) RGB image, (b) Segmented masks of ERF-PSPNet, (c) PCL algorithm,
(d) ENet (e) LinkNet, (f) Our approach.

that the recall values in Italy dataset are all higher than the
results of China dataset. First, intersections in China dataset
are more crowded and complex as shown in Fig. 4, which
are inherently more difficult than images in Italy dataset.
Second, in spite of being with a global reach, the Mapillary
dataset for training contains more images from Europe than
from Asia, which may slightly bias the appearances of
objects to be analyzed. This explains the recall gap between
two countries, even though our approach is already able to
generalize far beyond its training data, manifesting qualified
detection results across diverse scenarios.

V. CONCLUSIONS

Navigational assistance at urban intersections for Visually
Impaired Pedestrians (VIP) is a necessary step to reach an
optimal level of traffic safety, which is one major focus of
Intelligent Transportation Systems (ITS). In this paper, we
derive achievability results for unifying intersection-centered
perception tasks by utilizing real-time semantic segmenta-
tion, which is able to render a comprehensive set of assistive
awareness without incurring a long latency. The proposed
approach has been evaluated on a large-scale challenging
dataset and two egocentric datasets across different countries,
demonstrating the effectiveness in real-world assistance on
the wearable navigation system. Future works will involve
panoramic image semantic segmentation and multi-modal
sensory perception to constantly enhance the navigation
assistive framework.
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