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Abstract: Visual odometry has received a great deal of attention during the past decade.
However, being fragile to rapid motion and dynamic scenarios prevents it from practical use.
Here, we present PALVO by applying panoramic annular lens to visual odometry, greatly
increasing the robustness to both cases. We modify the camera model for PAL and specially
design the initialization process based on the essential matrix. Our method estimates the camera’s
poses through two-stage tracking, meanwhile builds the local map using a probabilistic mapping
method based on the Bayesian framework and feature correspondence search along the epipolar
curve. Several experiments are performed to verify our algorithm, demonstrating that our
algorithm provides an extremely competitive performance in robustness to rapid motion and
dynamic scenarios, meanwhile achieves the same level of accuracy as the state-of-the-art visual
odometry.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With the rapid development of robotics and autonomous driving technologies over the past
decade, Visual Odometry (VO) has been an area of intense investigation. VO estimates the
egomotion of an agent using only the continuous images captured by a single or multiple cameras
attached to it, which exhibits apparent discrepancy with other odometers using a code wheel or
the like [1]. Depending on the camera setup, VO can be categorized into monocular, stereo, and
RGB-D ones. Among them VO with a monocular camera has received considerable attention,
for the reason that a monocular camera is more economical and easier to calibrate compared to a
stereo (e.g. Stereolabs ZED [2]) or an RGB-D camera (e.g. Intel RealSense [3]). Meanwhile,
monocular VO could handle both indoor and outdoor environments, with no consideration for
depth aware range, which is a major limiting factor for stereo and RGB-D cameras [4, 5].
A multitude of VO schemes have been presented as of now. Although their pipeline may

be distinct from each other, they share a common premise that there must be enough overlaps
between two adjacent frames. Only this condition is satisfied, can monocular VO correctly
compute the relative motion between two frames. But this is not always the case. For a commonly
used perspective camera that has a limited Field-of-View (FoV), fast movement especially rapid
rotation will lead to the reduction of overlaps between contiguous frames, resulting in unreliable
outputs of VO or even failure in tracking.
On the other hand, current monocular VO mostly has a basic assumption that the target

scene must keep stationary during processing, since it’s not reliable to model the landmarks
corresponding to dynamic objects (such as pedestrians, vehicles, etc.) [6]. But actually the
real world doesn’t always stay static. Thus in the pipeline of VO, certain algorithms such as
RANSAC (RANdom SAmple Consensus) will be applied to eradicate the effects of dynamic
objects [7]. These algorithms are effective only if the dynamic components are negligible in
the whole field-of-view. However, for a perspective camera with a limited FoV, it’s not strange
to encounter situations where dynamic objects occupy most of the field-of-view in actual use.
In this case, the pose estimation by VO can hardly maintain consistent, or even worse, the VO
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pipeline will get interrupted.
In view of this, we propose to apply Panoramic Annular Lens (PAL) to a monocular visual

odometry in this paper, named PALVO. PAL is one of the specific wide angle lenses, which can
project 360◦ FoV onto a planar annular image at one time without rotating the lens, as shown in
Fig. 1(a) [8]. A clear benefit of 360◦ panoramic view lies in that it can ensure enough overlap area
between adjacent frames despite fast movement and rapid rotation. Meanwhile it’s with extremely
low probability that dynamic objects are dominant in a single shot. Thus, the above-mentioned
disadvantages caused by the limited FoV will be not a problem for PALVO, greatly improving
the robustness of VO to rapid motion and dynamic objects in realistic scenarios.
The contribution of this paper is threefold: 1. We present a modified camera model for PAL

based on previous work, which describes the mathematical relationship between the coordinate
of a point in 3D (three-dimensional) space and its projection onto the image plane of PAL; 2.
A monocular visual odometry for PAL is proposed, in which we specially design initialization
progress, tracking method, feature correspondence search along the epipolar curve and depth
filter for the PAL camera model; 3. We verify the presented PALVO on both synthetic dataset and
real-world dataset collected by a camera with PAL.We analysis the accuracy and robustness of our
algorithm, and compare it with existing monocular VO using perspective cameras, demonstrating
the superiority of 360◦ panoramic view.
The rest of this paper is organized as follows. A brief summary of some of the relevant work

about visual odometry is presented in Section 2. In Section 3, we introduce the camera model
used in this paper. A detailed description of PALVO pipeline is given in Section 4. In Section 5,
we perform some experiments to evaluate our algorithm. Finally, conclusions are drawn and
directions for future research are discussed in Section 6.

2. Related work

In this section, a brief review of representative works on visual odometry is given. It’s notable
that visual odometry and visual SLAM (Simultaneous Localization And Mapping) are often
discussed together, for the reason that visual SLAM is actually VO with loop closure and global
optimization [9]. Thus some research on visual SLAM will be reviewed as well.

2.1. Visual odometry

According to whether explicitly extracting and matching features or not, current existing VO
schemes can be mainly divided into feature-based methods which dominated the area for a long
time, and direct methods which gained popularity in recent years. The feature-based methods
compute the 6 Degree-of-Freedom (DoF) pose by matching salient and repeatable features over
frames and minimizing the re-projection error. While direct methods directly exploit pixel
intensity values instead of hand-crafted high-dimensional feature descriptors and minimize the
photometric error between adjacent frames to estimate the motion.

Feature-based methods MonoSLAM was proposed by Davison et al. in 2007 [10]. It is
considered the first visual SLAM. In MonoSLAM, camera motion and 3D position of landmarks
are simultaneously estimated using Extended Kalman Filter (EKF) [11]. The drawback of
EKF is that computational cost increases in proportion to the size of the environment. Klein
et al. proposed PTAM (Parallel Tracking And Mapping) in 2007 [12], which is the first
work to introduce the idea of split tracking and mapping into two separate tasks processed in
parallel threads. Mapping is based on keyframes, which are processed using Bundle Adjustment
(BA) [13]. Compared to EKF, BA yields more accurate results while maintains a reasonable rate
of exploration. Built on the main ideas of PTAM, Mur-Artal et al. designed a novel monocular
SLAM system named ORB-SLAM in 2014 [14,15]. ORB-SLAM incorporates a third thread
of loop closing besides tracking and local mapping. It can process sequences from indoor
and outdoor scenes and achieve impressive accuracy. They then presented a new version of
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ORB-SLAM2 for stereo and RGB-D cameras in addition to monocular cameras in 2017 [16]. It
is the current state-of-the-art feature-based SLAM algorithm.

Direct methods Newcombe et al. proposed DTAM (Dense Tracking And Mapping) [17],
in which the pose estimation is done by simultaneously creating a dense 3D surface model
and using it for dense camera tracking via whole image registration. Engel et al. presented
LSD-SLAM (Large-Scale Direct monocular SLAM) in 2014 [18]. LSD-SLAM uses direct image
alignment coupled with filtering-based estimation of semi-dense depth maps. It reconstructs
consistent, large-scale maps of the environment, which are limited to areas that have intensity
gradient. It was also Engel et al. who proposed DSO (Direct Sparse Odometry), which is
another leading algorithm of direct methods [19]. Same as LSD-SLAM, points with high
intensity are chosen as reconstruction candidates. One of the contributions of DSO has been to
incorporate full photometric calibration [20] besides traditionally used geometric calibration,
which increases performance compared to the basic "brightness constancy" assumption. Forster
et al. proposed SVO (Semi-direct monocular Visual Odometry) in 2014 [21]. The reason why
it’s called "semi-direct" is that it uses feature-correspondence and minimizes re-projection error
(like feature-based methods) while feature correspondence is an implicit result of direct motion
estimation rather than of explicit feature extraction and matching (like direct methods). The
authors claimed that SVO could produce a quite high frame-rate motion estimate on a consumer
laptop.
All the aforementioned works provide high performance under ideal laboratory conditions.

However, when it comes to realistic scenarios where the agent with the camera on it moves fast
or rotates rapidly, or there are dynamic objects in the environment, the existing VO/SLAM might
fail in giving a correct result. The limited FoV camera they used makes them sensitive to these
challenging circumstances. In this paper, we take advantage of PAL, which provides large-scale
perception of global scene, to tackle this problem.

2.2. VO with wide FoV cameras

Some researchers have recognized the impact of the camera FoV and optics on the quality of
motion estimate. Here we review some works on visual odometry or visual SLAM using wide
FoV cameras.

Gutierrez et al. developed a real-time visual SLAM system using monocular omnidirectional
vision in 2011 [22]. They took advantage of catadioptric cameras by integrating it in the
EKF-based SLAM, demonstrating that the system works better with omnidirectional vision
since features last longer. In 2018, Matsuki et al. extended DSO and made it applicable to
fisheye cameras with a field-of-view well above 180◦ [23]. They claimed that omnidirectional
DSO provides increased accuracy and robustness. In the same year, Wang et al. extended the
ORB-SLAM2 framework by applying fisheye cameras and introducing the semi-dense depth
map. Lin et al. designed PVO (Panoramic Visual Odometry) [24] for Ricoh Theta V panoramic
camera [25], which is a multi-camera system composed of two fisheye lenses and produces 360◦
FoV with stitch image processing.

Compared to these works with wide FoV imaging systems (fisheye lenses, catadioptric cameras
and multi-camera panoramic imaging systems), we propose to apply PAL to visual odometry
for the reason that PAL has significant advantages over other panoramic imaging approaches.
For instance, PAL is a compact panoramic solution with single sensor, tractable distortion,
and concise omnidirectional imaging law. It transforms off-axis light rays from large FoV to
approximately paraxial rays. Therefore, aberrations including distortion are reduced so that only
a few relay lens are needed [26]. By contrast, the distortion of fisheye lens is hard to control at the
margin of the fields, leading to loss of image quality. A multi-camera panoramic imaging system
synthesizes panoramic view by stitching images simultaneously captured by several cameras,
which can be bulky, expensive and computational costly. Additionally, the projection law for a
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Fig. 1. (a) PAL transforms the cylindrical side view onto a planar annular image. P and
u represent the object and image points respectively. (b) Schematic diagram of the PAL
camera model. P1 and P2 are points in 3D space with projections u1 and u2 on image
plane D. Without loss of generality, P1 and P2 are points at upper and lower margin FoV
respectively. The optical center is O, which is also the origin of the O-xyz coordinate system.
S represents the unit sphere. f is the polynomial with coefficients to be determined.

multi-camera system can be complicated, and the visual odometry with such a panoramic system
must pay attention to synchronization and data fusion between different cameras, which would be
an extra burden besides a normal VO procedure and leads to an increase in computing costs. The
mirrors used in catadioptric cameras are usually large and irregular, which are hard to fabricate
and need high-precision alignment [27]. It prevents this kind of catadioptric systems from broadly
use. Given that PAL has the above advantages, we make use of PAL to design a monocular VO
in this paper. The proposed PALVO framework processes panoramic view in a single image with
a concise omnidirectional projection formula. The compact structure and affordable computing
costs guarantee the practical applications in intelligent vehicles and robotics.

3. PAL camera model

The camera model describes the mathematical relationship between the 3D coordinate of a scene
point and its projection onto the image plane. Scaramuzza et al. presented an omnidirectional
camera model and the corresponding calibration toolbox for catadioptric and fisheye cameras,
which was initially described in [28] and later extended in [29]. Built on the main idea of
this work, we modify the omnidirectional camera model for catadioptric cameras and make it
satisfied for PAL by making the 3D coordinate system mirror symmetric with the original one, in
consideration of the fact that every optical ray is reflected twice in a PAL block but only once in
a catadioptric system.
As shown in Fig. 1(b), P is the scene point with coordinate (x, y, z)T , and u is the projection

on image plane with coordinate (u, v)T . As described in [28], (x, y)T is proportional to (u, v)T .
The back-projection (from image plane to 3D space) function π−1 can be written as Eq. (1):

P = π−1(u) = λ · g(u), λ > 0 (1)
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where
g(u) =

[
u v fb(ρ)

]T
(2)

fb(ρ) = α0 + α1 · ρ + α2 · ρ
2 + α3 · ρ

3 + α4 · ρ
4 + ... (3)

ρ =
√

u2 + v2 (4)

It’s worth noting that in actual calculation the back-projection π−1(u) is not exactly P but its
normalized coordinate P

| |P | | (the projection of P on the unit sphere), for the reason that from a
single view just the bearing vector can be obtained and depth (the distance from P to the optical
center O) is uncertain. Thus, λ is usually calculated as

λ =
√
ρ2 + f 2

b
(ρ) (5)

The corresponding projection (from 3D space to image plane) π can be modeled with Eq. (6):

u = π(P) = fp(θ) · h(P) (6)

where

h(P) =

[
x√

x2 + y2

y√
x2 + y2

]T
(7)

fp(θ) = β0 + β1 · θ + β2 · θ
2 + β3 · θ

3 + β4 · θ
4 + ... (8)

θ = arctan(
z√

x2 + y2
) (9)

Obviously, the polynomials fb(ρ) and fp(θ) are what need to be calibrated, whose coefficients
are the calibration parameters to be estimated.
Another thing to note is that we can easily get the derivative of the projection function π(P)

using chain rules as is shown in Eq. (10), which is a 2 × 3 Jacobian matrix and plays a role in
computing the 6 DoF pose through nonlinear optimization that will be explained in next section.

dπ(P)
dP

= [
∂π

∂h
]1×1 · [

∂h
∂P
]2×3 + [

∂π

∂ f
]2×1 · [

∂ f
∂θ
]1×1 · [

∂θ

∂P
]1×3 (10)

where [·]m×n represents an m × n matrix. Specifically, [·]1×1 is a scalar.

4. Pipeline

We first give an overview of our system, as illustrated in Fig. 2. For a monocular VO system, a
procedure to create an initial map is required, for the reason that depth cannot be obtained from a
single view. Thus the initialization module will be executed at first. Then for each new incoming
PAL frame, the tracking module will produce a 6 DoF pose by tracking the previous frame and
the local map. Meanwhile the depth filter will try to estimate the depth of keypoints and expand
the local map, using Bayesian framework and feature correspondence search along the epipolar
curve. The local map is composed of a multitude of keypoints with 3D coordinates whose depth
is converged after several observations from different frames, and keyframes from which the
keypoints can be observed.
Before detailed describing our method, we define some of the notation which will be used in

the next subsections. The PAL frame collected at timestamp k is denoted by Ik . For each keypoint
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Fig. 2. The pipeline of PALVO.

Pi ∈ R
3, it has a corresponding projection ui ∈ R

2 on the image plane, which is the same with
Section 3. In addition, the coordinate of Pi in the camera coordinate system at timestamp k is
denoted by Pk

i ∈ R
3, and Psk

i is the normalization of Pk
i , with the meaning of the projection on

the unit sphere. Pi , Pk
i and Psk

i satisfy the following equation:

Tk,w · Pi = Pk
i = d · Psk

i (11)

where d ∈ R denotes the depth of Pk
i in the kth frame and equals | |Pk

i | |. Tk,w ∈ SE(3) expresses
the camera position and orientation (the rigid-body transformation from the world coordinate
system to the camera coordinate system at timestamp k). The relative transformation between
two consecutive frames Tk,k−1 satisfies the following equation:

Tk,w = Tk,k−1 · Tk−1,w (12)

In the next subsections, a detailed description of the three modules (initialization, tracking
module and depth filter) will be given.

4.1. Initialization

The goal of initialization is to recover the relative pose between two frames and compute the 3D
coordinates of keypoints to create an initial map. There are two geometrical models to tackle
the problem: the homography and the essential matrix. The former one assumes a planar scene
while the latter one is suitable for a non-planar scene. Considering the wide FoV of PAL, the
keypoints in a frame are almost impossible to be coplanar. Thus we apply essential matrix to
reconstruct the structure from motion.
The essential matrix E satisfies the following condition:

P2
i

T
· E · P1

i = 0 (13)

Applying Eq. (11), the equation can be rewritten as

d2 · d1 · Ps2
i

T
· E · Ps1

i = 0 ⇒ Ps2
i

T
· E · Ps1

i = 0 (14)
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Fig. 3. The initialization module. (a) Initial feature correspondences are determined using
Lucas-Kanade optical flow, and the essential matrix is used to compute the relative motion.
(b) By triangulating the corresponding keypoints, an initial map can be created.

where Ps1
i and Ps2

i can be obtained by back-projection using the PAL camera model mentioned
in Section 3 and then the essential matrix is computable using the eight-point algorithm with a
RANSAC scheme [30]. A total of four motion hypotheses can be retrieved with the singular
value decomposition [31]. We triangulate the four solutions and score them based on the number
of points with positive depth in both cameras, as is shown in Fig. 3(b). The solution with
highest score is selected as the winner. The initialization is considered successful only when the
highest score is more than 5 times the second highest one, meanwhile the number of triangulated
keypoints is greater than 100. Otherwise the initialization is judged as invalid and will restart, in
order to avoid initializing a corrupted map.

It’s noteworthy that to find initial correspondences, we extract features on the reference frame
(the first frame) and track them onto the second one using Lucas-Kanade optical flow [32],
without computing feature descriptors and explicit matching (see Fig. 3(a)). The choice of
feature can be varied, e.g. SURF keypoints [33], FAST corners [34], or points with large gradient
in the image used in DSO [19]. In this paper, we make use of the oriented FAST corners, which
has ever been used in [16].

4.2. Tracking module

4.2.1. Prior pose estimate

In the tracking module, each new frame acquired from the PAL camera is assigned with a prior
pose estimate, which is generated from the uniform motion model reasonably. This initial guess
of relative camera motion T̂k,k−1 can be expressed as

T̂k,k−1 = Tk−1,k−2 (15)

Then a two-stage tracking process (i.e. tracking the previous frame and then tracking the local
map) is performed to refine the pose estimate.

4.2.2. Track previous frame

Taking ideas from SVO [21], we firstly update the relative camera pose and obtain feature
correspondences by tracking the previous frame using direct methods. The ith keypoint Pi with
projection ui in the previous frame Ik−1 is projected into the current frame according to the
frame’s prior pose estimate, and the intensity residual is calculated as

δI(ui, T̂k,k−1) = Ik(u
′

i) − Ik−1(ui) (16)

where
u
′

i = π(T̂k,k−1 · dui · π
−1(ui)) (17)
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Fig. 4. (a) Track previous frame. We seek to find the relative motion between two
consecutive frames that minimizes the photometric error. The colorful dash lines mean
affirmed projection, while the gray ones mean undetermined projection because the camera
pose is to be estimated. The following Figs. 5 and 6 are the same. (b) Residual pattern.
Pattern Nui used for photometric error computation [19].

We define the photometric error of the point ui as the intensity residuals over a small
neighbourhood of pixels that are denoted by Nui (see Eq. (18)). For the sake of computational
efficiency and providing sufficient information, we select 8 pixels arranged in a specific pattern
shown in Fig. 4(b) for error computation according to the conclusion in [19].

Eui (T̂k,k−1) =
1
2

∑
ui ∈Nui

δ(ui, T̂k,k−1)
2

(18)

As shown in Fig. 4(a), an iterative Gauss-Newton procedure is taken to estimate a T̂k,k−1 that
minimizes the photometric error over all the tracked keypoints:

T̂k,k−1 = arg min
T̂k,k−1

∑
i

Eui (T̂k,k−1) (19)

In order to determine the Gauss-Newton step for an iteration, the Jacobian matrix associated
with each point is estimated by chain rules as

Jui =
∂Ik
∂u′i
·
∂u′i
∂Pk

i

·
∂Pk

i

∂T̂k,k−1
(20)

where
Pk
i = T̂k,k−1 · dui · π

−1(ui) (21)

and ∂u′i
∂Pk

i

is exactly the derivative of the projection function π(·), which is detailed described in
Eq. (10).

4.2.3. Track local map

With the estimated T̂k,k−1 and previous camera motion, an initial guess of the current camera
pose can be calculated as

T̂k,w = T̂k,k−1 · Tk−1,w (22)

But only tracking the previous frame can be inaccurate due to accumulated drift. Thus the
alignment with respect to the local map is necessary.
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Fig. 5. Track local map. (a) Keypoints of the local map that are visible from the current
frame are projected onto the image and then the features get aligned. (b) The pose and
structure are optimized to minimize the re-projection error.

As Fig. 5(a) shows, keypoints which can be observed from the estimated camera pose are
projected into the current frame, which are denoted by ûi , giving the initial correspondences
between 2D features in the current frame and 3D keypoints in the local map. Then the position
of 2D features is optimized to minimize the photometric error between the estimated ûi and their
observations in earlier keyframes, which are regarded as reference frames (denoted by Ir ), as is
shown in Eq. (23). Similarly, we also define the photometric error as the intensity residuals over
the pattern shown in Fig. 4(b). But considering differences in viewpoint between the current
frame and the reference frames, homography is used during error computation.

ui = arg min
ûi

1
2

∑
ûi ∈Nui

Ik (̂ui) − Ir (π(H · π−1 (̂ui)))
2 (23)

where H denotes the homography matrix.
Once the feature correspondences are determined, we optimize the camera pose to minimize

the re-projection error, as shown in Fig. 5(b) and Eq. (24). The optimization result is treated as
the exact pose of the current frame.

Tk,w = arg min
T̂k,w

1
2

∑
i

π(T̂k,w · Pi) − ui

2
(24)

4.2.4. Keyframe selector

After pose estimation, the keyframe selector should determine whether the current frame is a
keyframe or not. A keyframe contributes to expanding the local map by initializing new keypoints
with unknown depth named seeds, and a non-keyframe updates the depth of seeds using the depth
filter.
A frame is selected as a keyframe in any of the following circumstances:

• Over 30% of the keypoints in the previous frame get lost;
• Fewer than 50 keypoints in the local map are tracked;
• No keyframe is generated in the past 10 frames;
• The depth filter thread is idle.

4.3. Depth filter

Once a frame is registered as a keyframe, seeds are created with an initial depth guess with a
large variance, which are modeled with Gaussian distribution as N(d̂, σ2). And when a new
non-keyframe is added to the depth filter, stereo matching based on correspondence search along
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Fig. 6. (a) Feature correspondence search along the epipolar curve. (b) The depth estimate
is updated in a Bayesian framework.

the epipolar is performed to update the depth of seeds. Different to a perspective camera, the
epipolar in PAL camera model is not a straight line but a "curve". Following the work of [35], we
apply a simple but efficient way to perform stereo on the PAL camera model.
As is shown in Fig. 6(a), Ps

min and Ps
max are projections of the seed with minimum and

maximum depth estimate on the unit sphere respectively. A straight line segment is built between
Ps
min and Ps

max , which can be expressed by

PL(α) = α · Ps
max + (1 − α) · Ps

min, α ∈ [0, 1] (25)

We sample this line segment and project PL(α) onto the image plane to perform matching using
the cost of SSD (Sum of Squared Differences).
In order to enforce that the search step size is less than 1 pixel, we estimate the number of

samples using an empirical formula:

Nsample =
π

2
·
π(Ps

max) − π(Ps
min)

 (26)

As shown in Fig. 6(b), according to the correspondence search result, the depth estimate can
be updated with the triangulated depth dtri in a Bayesian framework as follows:

d̂new =
σ2
old
· dtri + σ2

tri · dold
σ2
old
+ σ2

tri

(27)

σ2
new =

σ2
old
· σ2

tri

σ2
old
+ σ2

tri

(28)

Once the variance of a seed is decreased to 0.5% of its initial variance, it’s considered as
converged and added to the local map. Otherwise a seed is abandoned if it fails in stereo matching
with 10 consecutive non-keyframes.

In summary, the pipeline of PALVO is accomplished by initialization, two-stage tracking
and depth filter, which is specially designed for panoramic view. It produces 6 DoF poses and
simultaneously maintains a local map consisting of keyframes and keypoints with 3D coordinates.

5. Experiments

5.1. Experimental setup

We verify our algorithm on both real-world and synthetic dataset, and compare the performance
with SVO and monocular ORB-SLAM2, which are the state-of-the-art visual odometry/SLAM
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Fig. 7. (a) Experimental platform. The real-world dataset is collected using the robot of
TurtleBot, with a PAL camera, a RealSense D435, a project tango device and a laptop on
it. (b) The images of synthesis dataset are generated by a virtual camera which gives an
aerial view to a football field. Left: the PAL image. Medium: the football field. Right: the
perspective image.

that take use of a perspective camera. Each dataset is composed of PAL image sequences and
corresponding perspective image sequences, which are captured or synthesized in the same
trajectory. The real-world dataset is collected using the robot of TurtleBot, as shown in Fig. 7(a).
The PAL camera placed on top of the robot provides PAL sequences, and perspective sequences
are gathered from the color stream of RealSense D435, with a 77◦ field-of-view in diagonal.
Meanwhile, we adopt a Project Tango device [36] to produce a reference trajectory. As for the
synthesis dataset, we assume that the camera is in the air giving an aerial view of the ground.
The virtual camera moves in designed trajectories and the images are generated according to
real camera models, which are obtained by calibrating the cameras used in collecting real-world
dataset (both PAL and RealSense’s RGB camera). The designed trajectories are regarded as the
ground truth in evaluating the accuracy of the algorithm.
It needs to be emphasized that we specifically collect image sequences in the following two

circumstances: 1. The TurtleBot moves or rotates with a high velocity. 2. There are moving
objects in the environment. These two application scenarios could be daunting challenges for
traditional VO with a monocular perspective camera. By evaluating the performance of our
algorithm in these scenarios, the competitive advantage of PALVO is illustrated.

5.2. Accuracy test

Firstly we perform the accuracy test on the synthesis dataset. As is mentioned above, we assume
a virtual camera in the air giving an aerial view to a football pitch, which is shown in Fig. 7(b).
As we can see, from the synthetic PAL image almost the entire football field can be seen except
for the blind area of PAL, while for the perspective image one can see just a narrow area. We
designed 5 different trajectories and run the three algorithms (PALVO, SVO and monocular
ORB-SLAM2) on each sequences, computing the Root Mean Square Error (RMSE) over all
time indicies of the translational component. Since a camera is only a bearing-only sensor, it’s
impossible to obtain the scale of the map through a VO pipeline. Thus we align the scale of the
first 10 measurements with the ground truth, as SVO did in [21].

Secondly, we also compare the accuracy of the proposed PALVO with the other two algorithms
on a real-world dataset. Since the ground truth of 6 DoF poses for each frame in real-world
image sequences cannot be obtained conveniently, we utilize loop closure error as a criterion for
accuracy. Specifically, we collect 5 image sequences along different paths that start and end at
the same point. The residual between the starting and ending point of the trajectory produced by
VO is calculated, and the ratio of the residual to the entire length of trajectory indicates loop
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(a) (b) (c)

(d) (e) (f)

Fig. 8. The trajectories produced by PALVO, ORB-SLAM2 and SVO on the synthesis image
sequences s1 (a), s4 (b), s5 (c) and on the real-world image sequences with loop closure r3
(d), r4 (e) and r5 (f). In (d)-(f), the starting point is indicated by a black dot, and the ending
points of trajectories produced by different algorithms are represented by circles in different
color.

Table 1. Accuracy test results.
Frame Rate Translational RMSE (m) Loop Closure Error (%)

Method FPS s1 s2 s3 s4 s5 r1 r2 r3 r4 r5

ORB-SLAM2 37.4 0.9454 1.3281 1.4212 1.2256 0.3957 0.8364 1.2000 0.5425 1.2681 0.6779

SVO 423.9 1.5106 2.5244 2.3499 1.3900 1.1124 1.4276 2.0067 2.8455 3.5414 1.7109

PALVO 251.6 1.4046 2.2415 2.3963 0.4988 0.6739 1.9326 1.5893 2.9858 2.6105 0.9527

closure error. By the way, considering that the running time and computational efficiency is
important to VO, the FPS (frame per second) values are also recorded during the accuracy test.

Fig. 8(a)-8(c) give three examples of the designed trajectories in the synthesis dataset (s1, s4
and s5), and Fig. 8(d)-8(f) show the trajectories of three sequences in the real-world dataset
(r3, r4 and r5). All quantitative results of the accuracy test are shown in Table 1. It’s indicated
that on most synthesis sequences (s1, s2, s3, s5) the accuracy of PALVO is a little inferior
to ORB-SLAM2, but parallel to SVO (s1, s2, s3) or better than it (s5). On the 4th sequence
(s4), PALVO performs the best. As for the real-world dataset, ORB-SLAM2 achieves the best
performance on all of the sequences. PALVO is inferior to SVO on 2 sequences (r1 and r3)
and better to it on the other 3 sequences (r2, r4 and r5). The experiment results indicate that
our algorithm has achieved the same level of accuracy as SVO, which is a state-of-the-art VO
scheme, but is inferior to the up-to-date SLAM system. There are two main reasons for this result.
One is that ORB-SLAM2 is a full SLAM system with global optimization, which reduces the
accumulated drift. The other reason lies in the insufficient angular resolution of PAL, restricting
the precision of feature correspondence. Regarding the defect of lower angular resolution,
we perform sub-pixel processing during feature correspondence search, which overcomes this
disadvantage to some extent and allows our algorithm to maintain approximately the same
accuracy as SVO.

As for the running time, as one can see in Table 1, the proposed PALVO is capable to process
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(c)

Fig. 9. Experiment results. We run the three methods (PALVO, SVO and monocular
ORB-SLAM2) 10 times on each sequence and draw diagrams of number of sequences with
a success rate greater than N% as a function of N. The dash lines represent results of the
control group (slow motion and static scenarios), while the real lines stand for results of
the experimental groups with rapid motion (a) and dynamic scenarios (b). The higher the
curve, the more robust the algorithm. Moreover, we gradually increase the velocity from the
basic speed to 10 times faster, and run the three algorithms 40 times at each velocity. The
relationship between success rate and the velocity ratio is shown in (c).

the frames at 251.6 FPS, which is much faster than ORB-SLAM2 (37.4 FPS) but slower than SVO
(423.9 FPS). Considering the significant improvement in robustness, which will be illustrated in
next experiments, meanwhile maintaining the same level of accuracy as SVO and a much faster
running speed than ORB-SLAM2, our algorithm provides an extremely competitive performance.

5.3. Rapid motion

Several experiments are performed to verify the positive effect of PAL on robustness to rapid
motion, which challenges existing VO methods a lot. For a fair comparison, we set a control
group consist of sequences with slow motion and static scenarios, which is an ideal operating
environment for a VO algorithm. While the experimental group is set with static scenarios but
rapid motion. In our experiment, the speed of slow motion is set as 0.1m/s linear velocity and
0.314 rad/s angular velocity, while for rapid motion they are three times of these two values.

Each group contains 10 different sequences. In order to prevent accidental errors, we run the
three methods (PALVO, SVO and monocular ORB-SLAM2) 10 times on each sequence and
compare their mean performance. The statistics of success rate is used as the evaluation criteria
for robustness. For the sake of brevity and clarity, we draw diagrams of number of sequences
with a success rate greater than N% as a function of N. For example, on the red dash curve which
represents PALVO (control group) in Fig. 9(a), when the success rate is 90%, the number of
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Fig. 10. Trajectories produced by PALVO, ORB-SLAM2, SVO and Tango device. Both
SVO and ORB-SLAM2 failed in tracking when turning at a fast angular velocity. The picture
on the left shows the point cloud produced by Tango device.

sequences is equal to 10, meaning that the success rate of PALVO is greater than 90% on all of
the 10 sequences. Obviously, the higher the curve, the more robust the algorithm.
The results of three algorithms on the control group and on the sequences with rapid motion

are shown in Fig. 9(a). As we can see, on the control group, the success rate of PALVO is greater
than 90% on all of the 10 sequences, while ORB-SLAM2 and SVO have a same success rate on 9
and 7 sequences respectively. PALVO and ORB-SLAM2 have almost identical performance, with
a slight adavntage over SVO. For the case of rapid motion, PALVO still achieves a satisfactory
result, with a success rate of greater than 90% for 7 sequences. But ORB-SLAM2 performs not
so well in this circumstance, with a success rate of greater than 90% for just 3 sequences, as for
SVO the number is even 0, which performs the worst.
In order to further demonstrate the improvement of our algorithm, another experiment is

conducted. We set a base group with slow motion and static scenarios, and the basic speed is set
as 0.05 m/s linear velocity and 0.157 rad/s angular velocity. Then the speed is gradually increased
to twice, 3 times until up to 10 times of the basic value. A total of 10 image sequences are
collected at these different velocities. We run three algorithms 40 times on each of the sequences
and compare their success rate. The results are shown in Fig. 9(c). As we can see, with the
velocity increasing, the success rate of ORB-SLAM2 and SVO shows a significant decline, while
the proposed PALVO maintains a high level of success rate. It’s no doubt that PAL improves the
robustness of VO to rapid motion significantly.
Fig. 10 shows a sequence on which both SVO and ORB-SLAM2 get failed. It can be seen

that the trajectory estimated by PALVO is almost identical to the trajectory given by Project
Tango device. But SVO and ORB-SLAM2 both failed in tracking when turning at a high angular
velocity. The rapid rotation results in drastic reduction of the overlap between consecutive frames,
leading to the unsuccessful run. But for PAL, thanks to the panoramic view, quite a number
of objects remain in the FoV during rotation, ensuring the robustness of our algorithm to this
circumstance.

5.4. Dynamic scenarios

We also study the robustness of PALVO in dynamic scenarios and compare it with SVO and
ORB-SLAM2. The control group with slow motion and static scenarios in Section 5.3 is again
taken for comparison, and the experimental group is set with slow motion but dynamic scenarios.
A total of 10 image sequences were taken when there were pedestrians walking in front of the
robot, leading to most FoV occupied by dynamic objects (pedestrians). Similarly, we run the
three algorithms 10 times on each sequences and calculate statistical results.

The running results of three algorithms are shown in Fig. 9(b). As we can see, PALVO is least
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Fig. 11. Trajectories produced by PALVO, ORB-SLAM2, SVO and Tango device. Both
SVO and ORB-SLAM2 got interrupted when there’s a pedestrian walking in front of the
camera. The picture on the left shows the point cloud produced by Tango device.

affected and maintains a high success rate on most sequences, but for SVO and ORB-SLAM2,
the opposite is true. Only on 3 sequences SVO has a success rate greater than 90%. Compared
to the control group, it’s safe to say dynamic scenarios bring a disastrous effect to VO with a
perspective camera, but a very slight impact on PALVO.
An unsuccessful run of SVO and ORB-SLAM2 is shown in Fig. 11. It can be seen that the

walking pedestrian interrupts the tracking process of SVO and ORB-SLAM2, but has no impact
on PALVO because of low proportion in the PAL’s FoV, of which the trajectory maintains high
consistency with Project Tango device.

5.5. Field test

For the sake of further evaluating our algorithm and validating its effectiveness and reliability in
actual use, field tests are conducted in the outdoor area. We utilize a remote control car equipped
with a PAL camera on it and drive the car along two paths at a velocity of about 3m/s. Each
trajectory is around 150 meters long. There exist 360◦ sharp turns during driving, meanwhile
there are plenty of dynamic objects such as pedestrians and vehicles, which is often the situation
a visual odometry algorithm has to deal with when actually applied to intelligent vehicles.

The running results of our algorithm are shown in Fig. 12. The two trajectories are highlighted
in different color, one in blue and the other in red. It can be seen that even in the case of a fast
U-turn (A) and a vehicle passing by (B), our algorithm runs successfully and produces correct
trajectories. The experiment results further prove the robustness of the proposed PALVO to rapid
motion and dynamic objects, and partially demonstrate the practicality of our algorithm.

6. Conclusion and future work

In this paper, we propose PALVO by applying panoramic annular lens to visual odometry. Based
on the PAL camera model, we specially design the initialization module with essential matrix,
two-stage tracking with prior pose estimate, and depth filter with feature correspondence search
along the epipolar curve. Experiments demonstrate that our method is extremely robust to rapid
motion and dynamic scenarios, which have been daunting challenges for a normal VO. The gain
in robustness is due to the wide FoV of PAL, which brings a larger overlap between adjacent
frames and smaller proportion of moving objects in the whole FoV. Our algorithm achieves
the same level of accuracy as the state-of-the-art VO while brings the dramatic improvement
in robustness, greatly enhancing the practicality in actual use such as robot localization and
autonomous driving. Additionally, our visual odometry framework can be easily extended to
catadioptric and fisheye cameras, since they share the same projection relationship described by
the camera model we used, except for some modifications.
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Fig. 12. Trajectories produced by PALVO in field tests. There exists a fast U-turn at A, and
there is a car passing by at B. Despite this, PALVO runs successfully and produces correct
trajectories.

In the future, we aim to decrease the accumulated drift by introducing loop closure, generating
a full SLAM system [37]. Additionally, we have the intention to develop semantic SLAM based
on PAL by incorporating robust panoramic annular semantic segmentation [38–40].
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