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Abstract. Positioning is one of the most urgent problems for assisting visually
impaired people, especially in indoor environments where GPS signals are weak.
In this paper, we present a positioning framework based on panoramic visual
odometry for assisting visually impaired people. We introduce panoramic annular
lens to visual odometry and use the Taylor camera model to describe its
projection rules. Some critical techniques in visual odometry, including direct
image alignment and stereo matching, are extended to fit this camera model.
Besides, an easy-to-maintain coordinate alignment method based on multi-pinhole
image rectification and marker detection is also proposed to unify the results of
visual odometry in the world coordinate system. We evaluate our system on
both synthetic and real-world datasets in a comparative set of experiments and
compare against state-of-the-art algorithms. The experiment results show that
the robustness of positioning has been significantly improved by the proposed
visual odometry algorithm with panoramic annular lens and the system has the
ability to provide reliable positioning results in indoor environments.
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1. Introduction

In the world, there are estimated 253 million people
suffering from severe vision impairments and blindness
(Bourne et al.; 2017). One of the most urgent problems
faced by Visually Impaired People (VIP) lies in how
to determine their position correctly, especially in
unfamiliar environments. Thanks to the development
of the Global Positioning System (GPS) and the
Geographic Information System (GIS), VIP can locate
themselves in the open air and go anywhere with the
help of a smart phone. But in indoor environments,
GPS signals are usually weak, and how to help VIP
locate themselves indoors is still a challenging problem.

Visual Odometry (VO) is one of the promising
positioning methods to solve this problem. It has
been widely used in the field of robotics, autonomous
driving and etc. (Huang et al.; 2017; An et al.; 2017;
Dimas et al.; 2017). VO determines the position and
orientation of a camera by tracking scene features
(e.g. point features and line features) in a sequence
of images. Thus, a challenging issue of VO in indoor
environments lies in the lack of texture in images. For
example, if a camera shoots a white wall, most part of
the image will be occupied by the wall, and there are
not enough textures that can be utilized to estimate
the motion of the camera. Another problem is related
to the dynamic objects in real-world scenarios, such
as pedestrians, which introduces unstable features into
images and finally affects the positioning accuracy.

In this paper, we present a panoramic ceiling-view
positioning framework based on Panoramic Annular
Lens (PAL) to help VIP locate themselves in indoor
environments. PAL is a kind of panoramic optical
system, as shown in figure 1(a)-(b). It utilizes two
reflective surfaces to achieve wide Field of View (FoV),
typically near 180 degrees. Thus the commonly used
pinhole camera model cannot describe its projection
rules correctly. To solve this problem, we make
use of the Taylor camera model (Scaramuzza; 2007),
a kind of unified omnidirectional camera model, to
describe the projection rules between 3D world and
2D images. For the VO algorithm, we extend DSO
(Engel et al.; 2017), a state-of-the-art monocular VO
algorithm, to fit the Taylor camera model. Moreover,
a coordinate transformation method based on ArUco
markers (Romero-Ramirez et al.; 2018; Garrido-Jurado
et al.; 2016) and multi-pinhole rectification is also
proposed to transform VO results to the world
coordinate system. A proof of concept prototype is also
designed with a PAL system mounted on a helmet, as
shown in figure 1(c).

The benefits of using PAL as the sensor of a
ceiling-view VO in indoor positioning are manifold.
First, the camera is mounted on the head and the
FoV of PAL is about 180 degrees. This means the
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Figure 1. Panoramic annular lens and the proposed prototype.
(a) The PAL used in our system. (b) PAL imaging principle. A
ray is reflected twice in the PAL block before reaching the relay
lens. (c) The prototype of a head-mounted PAL.
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Figure 2. The schematic diagram of the positioning framework.

camera can capture all information above the user,
including the entire ceiling, as well as part of walls
and doors, which can provide enough stable textures
for positioning. At the same time, most dynamic
objects on the ground will not be captured by the
camera, which makes our VO algorithm more robust.
Second, compared with conventional fisheye lenses and
catadioptric imaging systems, PAL has compact size,
small f-theta distortion and is easier to design and
manufacture (Huang et al.; 2013), which makes our
wearable devices more compact and cost-effective.
The schematic of our algorithm is shown in figure
2. Input PAL images are sent to two modules and
processed simultaneously. Visual odometry analyses
the image sequence and outputs camera positions
in the local coordinate system where the origin is
the first image frame and the unit is uncertain due
to the observability of monocular camera. Direct
image alignment, stereo matching and sliding window
optimization are utilized to calculate and refine 6-
DoF camera poses as well as the depth of sparse
points. Meanwhile, PAL images are also rectified by
the multi-pinhole model to generate four narrow FoV
pinhole images. ArUco marker is detected on these
undistorted pinhole images and the 6-DoF camera pose
is estimated in the world coordinate system, where
the origin is the detected marker and the unit is



meter. The marker can be seen as the anchor of the
building. Once enough camera poses are calculated
both in the world coordinate system and the local
coordinate system, we can estimate the 3D similarity
transformation (rotation, translation and scale change)
from local coordinate system to world coordinate
system through a least squared method. After that, all
positions produced by VO can be transformed to the
world coordinate system for positioning and assisting
VIP. The contribution of this paper are summarized as
follows:

e In order to increase the robustness of VO, we
introduce PAL to VO and perform direct image
alignment and stereo matching based on Taylor
camera model.

e To address the issue that VO results do not
match the world coordinate system, an easy-to-
maintain coordinate alignment method based on
multi-pinhole rectification and marker detection is
proposed.

e Our implementation of wearable prototype is
evaluated in real world environments and the
experiments demonstrate the effectiveness of our
positioning framework.

The rest of this paper is organized as follows.
Section 2 reviews the relevant literature on indoor
pedestrian positioning.  Section 3 introduces the
proposed VO method for PAL. Section 4 describes
the multi-pinhole rectification and the transformation
of local coordinate system and world coordinate
system. In section 5, a comprehensive set of
experiments on both synthetic and real-world datasets
are performed to evaluate the performance of our
positioning framework. Finally, the conclusions and
future work are presented in section 6.

2. Related Works

In recent years, with the development of sensors
and mobile computing, a wide variety of portable
navigation systems have been proposed to assist VIP to
avoid obstacles (Dimas et al.; 2019; Yang et al.; 2016),
navigate (Jayakody et al.; 2020; Donati et al.; 2020),
and perceive the environment (Iakovidis et al.; 2020;
Yang et al.; 2018). Positioning plays an important role
in assisting VIP. Accurate positioning is the premise
of navigation and other scene perception functions.
In the literature, many works have been proposed
to assist VIP in positioning in indoor environments.
According to the type of sensors, the technique of
indoor positioning falls into two categories: inertial
positioning and visual positioning.

Inertial sensors-based indoor positioning systems
usually take use of inertial sensors (gyroscope and
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accelerometer) to estimate the movement and use
radio beacons, such as WiFi and bluetooth, to
correct drifts and recognize key points, such as
entrances and elevators (Harle; 2013). In 2018,
M. Murata et al. presented an indoor positioning
algorithm based on inertial sensors in a mobile phone
and Bluetooth Low Energy (BLE) beacons (Murata
et al; 2018). They used particle filter to build a
probabilistic representation of positions and proposed
some techniques to make their algorithm perform
better in multi-storey building-scale environments. An
experiment was conducted in a shopping mall with four
floors and 218 pre-installed BLE beacons to evaluate
the system.

Another clusters of research use camera as main
sensor to realize indoor positioning for VIP. In 2016,
Lee and Medioni presented an RGB-D camera based
wearable indoor navigation system for VIP (Lee
and Medioni; 2016). They adapted FOVIS (Huang
et al.; 2017), a feature-based 6-DoF motion estimation
algorithm, to estimate camera poses and used point
clouds alignment to refine poses. Two dimensional
occupancy grid map and dynamic path planning
were implemented to achieve point-to-point indoor
navigation. A smart phone application and a tactile
feedback vest were also developed as user interface.
Their system included multiple functions, including
navigation, obstacle avoidance, etc. and can provide
comprehensive assistance to VIP without a prior map.
However, their positioning method did not perform
well in the experiment, with an error of 2.6 meters after
49 meters walking, which limits its usability. ISANA
is another types of VO-based indoor navigation system
that requires building map input first (Li et al.; 2016).
It was developed on Google Project Tango device
and used built-in visual inertial odometry to estimate
camera poses. A map alignment algorithm based on
semantic landmark (e.g. room num) was proposed to
bridge the position among building map and camera
poses.  Obstacle detection and avoidance function
was also designed and a field test was conducted to
demonstrate the effectiveness of the system. However,
their map alignment algorithm (can be regarded as
the initialization of the entire system) needed several
successful room number recognitions, which may take
a long time in actual use.

Some studies also take advantage of panoramic
cameras to enhance the robustness of indoor position-
ing. In 2012, A. C. Murillo et al. proposed a personal
positioning system using a head-mounted omnidirec-
tional camera (Murillo et al.; 2012). It used extended
Kalman filter to achieve a VO. Limited by the develop-
ment of VO algorithm at that time, their positioning
accuracy suffers from large scale and rotation drifts.
F. Hu et al. presented a localization system based on



panoramic images indexing technique to help VIP nav-
igate in indoor environments (Hu et al.; 2015). They
extracted features of current images and searched it in
a pre-created image feature database to find the loca-
tion and the orientation. The time-consuming search
process was done on a cloud server with GPU paral-
lel acceleration to obtain real-time performance. How-
ever, this method needs to build a dataset of images-
position pairs, which usually takes a long time. In
scenes with repeating textures, such as corridors, this
appearance-based method is more likely to fail.

3. Direct Odometry for Panoramic Annular
Lens

In this section, we will introduce the VO framework
briefly and elaborate how it runs on Taylor camera
model. Our algorithm is an extension of DSO (Engel
et al.; 2017) and the pipeline is shown in figure 3.
Initialization is the first step of the proposed system. In
this step, points with high gradient on the first frame
are selected and the initial depth of these points are
estimated by direct image alignment with following
frames. After a successful initialization, a fix-size
keyframe sliding window is created immediately and
the first frame is pushed into the sliding window as
the first keyframe. Every keyframe in the sliding
window contains a 6-DoF camera pose in the local
coordinate system and maintains some points with
depth. The sliding window is the core of the system
and all following steps are based on it. When a new
PAL frame is captured, its 6-DoF pose relative to the
newest keyframe is estimated by using the direct image
alignment. Then stereo matching is performed to
refine the depth on newest keyframe. If the movement
between the current frame and the newest keyframe is
larger than a threshold, the current frame is converted
to a keyframe and pushed into the sliding window. All
poses and points of keyframes in the sliding window
are optimized jointly. A marginalization step is also
executed to keep the number of keyframes less than
the size of the sliding window.

Notations. We denote vectors (t) and matrices
(R) with bold letters and scalars (a) with light letters.
Camera poses are represented in two equivalent ways.
For coordinate transformation, 4 x 4 matrices of the
ot e sEE) is
used, where R is the 3 x 3 rotation matrix and t is the
3 x 1 translation vector respectively. For optimization,
a minimal representation is required and we use 6 x 1
vectors of the Lie algebra corresponding to the Special
Euclidean group &€ € se(3) to represent camera poses.
These two representations are connected through the
exponential map and the logarithmic map (Engel et al.;
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Figure 3. The schematic diagram of our visual odometry.

Figure 4. Taylor camera model. (a) The projection flow. The
blue area indicates the effective FoV of PAL and the red curve
is the visualization of the polynomial function. (b) Mapping an
PAL image onto the unit sphere based on the camera calibration
results.

2014).

3.1. Taylor camera model

Camera models describe the mathematical relationship
between a 3D point in the world and its projection
on the image. The pinhole camera model is the most
widely used camera model for ordinary cameras. It
projects a point in 3D space onto the image plane
through an ideal pinhole. However, if the FoV is
larger than 180 degrees, the pinhole model is no
longer suitable. Thus we use the Taylor model,
a kind of unified sphere projection model proposed
by Scaramuzza (Scaramuzza; 2007) to describe the
imaging formula.

As shown in figure 4(a), a 3D point P1 = [z,y, 2
in the camera coordinate system is projected onto a
pixel p1 = [u,v]T in the image coordinate by three
steps. First, Py is normalized onto a unit sphere,
denoted as P}. Then, a polynomial factor p(f) is

]T



multiplied to change the norm of P/, and finally it
is directly projected on the image plane with a bias
¢ = [cg¢)7 added. The complete mathematical
expression to project a 3D point can be written as:

S i H W
\/ﬁm(f)) Cy
where

VT

0 = atan(
z

(2)

p1(0) = ag + a20® + az0® + ... + an (3)

Note that the a; is constant equal to zero due to the
symmetry of lens. The unprojection function is

(u—cz)/pa(r)

P = Hil(pa dp) =dp | (v—1cy)/p2(r) (4)

1
where
r=+v/u2+ v? (5)
pa(r) = b + bar? + bzr + ...+ byrY (6)

It is noteworthy that the polynomial functions
p1, p2 used in projection and unprojection are different,
but the meaning of p is the same, i.e. the relation
between camera coordinates and pixel coordinates.
All parameters that need to calibrate are cu, ¢y
and coefficients of p; and ps. According to
Scaramuzza’s experiment (Scaramuzza; 2007), fourth-
order polynomial is an appropriate choice to balance
the computational complexity and precision.

We use OCamCalib toolbox I, an omnidirectional
camera calibration toolbox for Matlab, to calibrate the
parameters of the Taylor camera model (Scaramuzza
et al.; 2006). Ten PAL images with checkerboard are
captured for calibration and the calibration process
include four steps:

e Extract corner points of the checkerboard.

e Calibrate the coefficients of p by a least-square
method.

e Estimate the optical center ¢, and ¢, through a
iterative searching method.

e Optimize all parameters globally to decrease the
reprojection error.

Figure 4(b) shows a PAL calibration image and
visualizes the performance of projecting an PAL image
onto a unit sphere according to the calibration results.

1 https://sites.google.com/site/scarabotix/ocamcalib-toolbox

8.2. Direct image alignment

The direct image alignment is used in initialization
and direct pose estimation stages to estimate the pose
between two images. We use the newest keyframe
in the sliding window as a reference frame I;, which
includes a pose T; and N, points with depth. The
pose T; of a following frame I; can be estimated
by directly minimizing the photometric error of two
frames, formulated as

T; = argmin E wy,
T; pel;

L{p) — 2Tilp) ™)

i
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where p and p’ are pixels on I; and I;. Before
calculating the photometric error between p and p/,
the exposure time of frames are also considered,
denoted as t; and t;. Besides, w, is a gradient
dependent weight to reduce the influence of low
gradient points and ||-[|, denotes the Huber norm. p’
is the reprojection point of p based on the its depth
dp and the camera model that described in section 3.1,
given by

p/ =II(RIT"!(p,d,) +t) (8)
where
R o)

We use Levenberg-Marquad method to solve this
weighted non-linear least-squares problem. The se(3)
increment §¢ is computed by the following equation:

(JTWI + AI)o¢ = ITWr (10)

where r is the stacked residual vector of N,, tracked
points and W is a diagonal matrix of weights w,,. J is
a Np, x 6 jacobian matrix of stacked residuals. For each
row of J, it can be decomposed as

1= o), |o% . 15
0P’ |1va LOP'[gys 9€ J3y6

where [];,xn denotes the dimension of matrix, and

(11)

oI,
op’
g—g,, is the jacobian of the projection function
II(P).

o 88—12/ is the jacobian of left-compositional deriva-
tive.

is the gradient of image I, at point p’.

Some tricks are employed to make the direct
image alignment run in real time. First, we use a
coarse-to-fine method in optimization: creating an
image pyramid, and then optimizing variables from low
resolution images to high resolution Images gradually
(Engel et al.; 2014). This trick can reduce the number
of iterations and the optimization will converge quickly.
Second, some key parameters are selected carefully to
make the computation of error and jacobian matrix



Figure 5. Stereo matching. The left sphere indicates the newest
keyframe and the right sphere indicates the current frame. The
epipolar curve segments on units sphere and image are shown in
the orange curves.

not too slow. For example, N, is set to 2000, so up
to 2000 points will be initialized and included in the
calculation.

Note that the initial depth of points are also jointly
optimized in the initialization. Moreover, a brightness
affine transformation is performed before calculating
the photometric error. These details can be further
referenced to DSO (Engel et al.; 2017).

3.83. Stereo matching

After estimating the pose of the current image I,
we can improve the accuracy of depth on the newest
keyframe I} ;). The problem can be regarded as a stereo
matching problem: Iy, and I; are the images of the
left and right camera respectively and the rotation R
and translation t between them is known. We need to
match points on Iz, to points on I; and reconstruct
the depth by triangulation.

For pinhole camera model, the best match point
can be found through searching along the epipolar line
segment on I; (Vogiatzis and Herndndez; 2011). But
for Taylor camera model, the epipolar line is a curve
segment, as shown in figure 5. As the epipolar curve
segment is usually short, we split it into many short
segments to solve this issue.

The depth of a point on Iy, is parameterized
by min inverse depth d,,;, and max inverse depth
dmaz- We first calculate the start and end points of
epipolar curve segment on the unit sphere, denoted
by Pin and Pue.. The mathematical description of
epipolar curve on the unit sphere can be expressed by
the interpolation of P,,;, and P4, given by

PL(Q) = OéPmam + (1 - Oé)szn (12)

with o € [0, 1]. and the epipolar curve segment on the

image is

pr(e) =H(PL(a)) (13)
We start searching the best match pixel at pr(0)

and increase « gradually. Sum of Squared Differences
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(SSD) over eight equidistant pixels is used as the
matching cost. To search the epipolar curve segment
pixel by pixel, the increment d« is approximately set
to 1/|pL(1) — pL(0)], and this approximation is good
in practice.

After searching the best matching point, we use
triangulation process to calculate the depth of point
on Iz . Let prs, and p; are the matched points on
1,4, and I;, the inverse depth of point djy, and d; can
be calculated by solving the following equation:

1 1 1
do ! (i) = d;
The uncertainty of depth og,, Is also estimated by
assuming we have 1 pixel error in point matching
(Engel et al.; 2013). We only keep dpmin = dij, — Ty,
and dmas = dif, +04, 5 b0 parameterize the depth and
use them for the stereo matching of the next frame.

‘RIT'(p;) +t (14)

8.4. Sliding window optimization

Sliding window optimization is an effective technique
to reduce error and keep scale consistency. As we follow
the optimization method in (Engel et al.; 2017), so here
we briefly introduce the basic flow.

If the change of movement, rotation and exposure
time is larger than a threshold, or the photometric
error of direct pose estimation is too large, the current
frame will be selected as a keyframe and be inserted
into the sliding window. Then some pixels on the
new keyframe with high gradient will be selected as
tracked points. A joint optimization is performed to
minimize the photometric error over all keyframes in
the sliding window and all camera poses as well as
the depth of points will be adjusted. If the number
of keyframes in the window exceeds Ny (e.g. Ny =7
in our method), a marginalization process will be done
to remove a keyframe from the window to balance the
computational complexity and precision.

4. Positioning in world coordinate

The results of monocular VO are in the local coordinate
system and the unit is also indeterminable. Thereby,
the real-time output of VO cannot be used for
navigation directly. We use the ArUco marker
(Garrido-Jurado et al.; 2016) to estimate the rotation,
translation, as well as the scale change between the
local coordinate system and the world coordinate
system in the building. First, a PAL image is
rectified to four virtual pinhole images. Then, ArUco
marker detection is performed on four pinhole images
respectively. If a marker is successfully detected, the
pose in the marker coordinate system can be estimated
by calculating and decomposing the homography
matrix. Once enough camera poses in both the local



Multi-pinhole PAL image rectification.
PAL image. (b) Mapping the PAL image on the unit cube. (c)
Complete undistorted multi-pinhole image.

Figure 6. (a) Raw

coordinate system and the marker coordinate system
are estimated, we can calculate the 3D similarity
transformation between them. The marker can be
regarded as an anchor of the building. Through a
marker, we can unify multiple trajectories in a common
world coordinate system, where its origin is the marker
and the unit is meter.

4.1. Multiple-pinhole rectification

In order to detect the ArUco marker correctly, the
marker on the image must satisfy the perspective
projection rules, i.e. the border of a marker on the
image must keep straight. Raw PAL images obviously
do not satisfy this condition, as shown in figure 6(a).
Based on the taylor camera model, we can map
a PAL image onto a unit sphere, as demonstrated in
section 3.1. It is also feasible to extend the unit sphere
to a cube and then we use four virtual pinhole cameras
to capture the side surfaces of the cube, as shown
in figure 6(b) and 6(c). The virtual pinhole camera
parameters K™P are set carefully to make the most of
valid sensing areas of a PAL image. The projection
rules of the undistorted pinhole image is given by

p = II"?(P) = K™"R,P (15)

where R; is the rotation matrix between the PAL
camera coordinate system and the coordinate system
of the 7th virtual pinhole camera.

4.2. Coordinate alignment

The 3D similarity transformation matrix S from the
VO local coordinate system to the marker coordinate
system can be decomposed as

o[

o (16
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We calculate R, and then estimate s and t through a
least squared method.

Assuming we have n pose pairs, denoted by
Rtk and RY 9, tY©, where i = 1..n. The R can
be calculated by

1
R=-> R™R/?)! 17
Y RIHRYO) (7)
Note that rotation matrices do not have summation
operation, so we perform it on the Lie algebra so(3).

Then we stack s and t into a vector to construct
the following linear equations:

Rt ¢ I tk

S ] = (18)
Rt, ¢ 1 tyk
The least squared solution of s and t can be obtained
by solving this overdetermined equations.

5. Evaluation

In this section, we will evaluate the performance of
our panoramic VO and the accuracy of positioning in
a building in detail. The camera we used is a PAL
with 33 to 96 degrees half FoV and a CMOS sensor
with 480 x 480 resolution and global shutter. Our
entire positioning system runs at 10 Hz on average on
a laptop with Intel(R) Core(TM) i7-8550U CPU and
16G RAM.

5.1. Ewvaluation of the visual odometry

Accuracy and robustness of our method are evaluated
in this subsection. @~ We compared our algorithm
with three state-of-the-art monocular VO/SLAM
algorithms, DSO (Engel et al.; 2017), SVO (Forster
et al.; 2014) and ORB-SLAM2 (Mur-Artal and Tardés;
2017), on both synthetic datasets and real-world
datasets. ORB-SLAM2 is a representation of feature-
based SLAM algorithms. It utilizes ORB features
(Rublee et al.; 2012) to match the corresponding points
in two images and then estimates the camera motion.
we disabled the loop-closing function and only kept the
VO function of ORB-SLAM2 for fair comparison. SVO
is a hybrid VO method. It takes use of sparse optical
flow and direct image alignment to estimate the camera
motion first and minimizes the reprojection error of
points in the back-end, unlike our method and DSO
that minimize the photometric error of pixels. Note
that these three methods can only run on narrow FoV
image sequences which can be described by the pinhole
model.



Figure 7. Synthetic datasets. (a) A synthetic pinhole image.
(b) A synthetic PAL image. (c) Top view of the virtual corridor.

5.1.1. Synthetic datasets Synthetic datasets can
provide ground truth to evaluate the accuracy of
pose estimation comprehensively. Considering the
application of our system, we created a virtual circular
corridor by mapping real images of ceiling and wall to
a 3D model, as shown in Figure 7. Image sequences
were synthesized by simulating a pedestrian walking
in the corridor. We synthesize both PAL images and
pinhole camera images for our algorithm and other
algorithms respectively. The parameters of synthetic
PAL images are consistent with the real PAL images.
The resolution of synthetic pinhole images is set to be
the same as PAL images (480x480) for fair comparison,
and the FoV is set to 90 degrees, a common FoV for
pinhole cameras.

In order to simulate different scenarios, we
synthesized six datasets in total, with two different
ceilings and three different walking speed. FEach
sequence contains 2500 images, and some noise was
also added to poses to simulate the camera shaking
caused by walking. Note that the noise only affects
poses and do not cause motion blur on the image.
The accuracy was evaluated by the alignment error
proposed in (Engel et al.; 2016). Let p;., € R3
and g1, € R are the generated trajectory and the
ground truth with n frames. First we align both the
start segment py. /2 and end segment py, /24 1..., to the
corresponding ground truth trajectory g independently
and get two similarity transformation matrices Sgtqrt
and S¢,q. Then the alignment error is defined by
the translational Root Mean Square Error (RMSE)
between two trajectories that transformed by Sgart

and Se,q respectively:

1 n
€align = ﬁ Zl |Ssta/r'tpi - Sendpi|2 (19)
i=
The scale drift eg.qe and rotation error €,otqrion Can
also be evaluated quantitatively by decomposing the
rotation part and scale part of the difference between

two similarity transformation S+ and Sepnq:
(20)
(21)

. 1

Erotation = TOtamon(SstartSend)
—1

€scale = Scale(sstartsend)

Each sequences was run five times for each algorithm,
and the mean alignment error of five times was
recorded, as shown in table 1.

From table 1, we can see that in synthetic
datasets with block ceiling, almost all methods can
run successfully. DSO and our method are more
accurate than SVO and ORB-SLAM2 (without loop-
closing) in block ceiling datasets. The main reason
is that both SVO and ORB-SLAM2 need to extract
FAST corner features. But for the block ceiling, only
the cross point of lines can be regarded as stable
corner features. DSO and our method rely on points
with high gradient, so the point on lines can also
be tracked. Although our method and DSO follow
a similar flow, there is still a difference of accuracy
between. This difference can be explained from the
perspective of angular resolution. PAL images and
pinhole images have the same resolution (480 x 480),
but the FoV of PAL images is nearly twice as large
as pinhole images, which means pinhole images have
higher angular resolution. In white ceiling datasets,
only our method can run successfully. Benefit from
large FoV, our method can track points on walls and
keep not failing.

5.1.2. Real-world datasets Two datasets of different
scales are used to evaluate the performance of VO
qualitatively. We captured both PAL images and
pinhole camera images simultaneously for comparison
as we did on synthesized datasets. The pinhole camera
was the left infrared camera of Intel RealSense D435
(Intel(R) Realsense(TM) Depth Camera D400-Series;
2018) with resolution 1280 x 720, horizontal FoV 87
degrees and global shutter. Two cameras were rigidly
fixed to a 3D printed shelf to ensure that two cameras
have the same motion.

In the first dataset, we traversed a looped route
in a hall. The size of the hall was about 9.3m x 9.3m.
Both SVO and ORB-SLAM2 cannot be initialized due
to the lack of detected corner features. As map creation
and camera pose estimation complement each other,
a consistent map is equal to an accurate trajectory.
Thereby, We qualitatively evaluate the camera poses



Table 1. Results on synthetic datasets. BC and WC indicate the block ceiling and the white ceiling used in synthetic datatsets. LS,
MS, and HS indicate low speed, medium speed and high speed at witch the virtual camera moves. The unit of e,otqtion is degree.

Ours DSO SVO ORB-SLAM?2
€align Erotation €scale €align Erotation €scale €align Erotation €scale €align Erotation €scale

s1(BC+LS) 96.6(15.7)  0.25(0.11) 1.0%(0.1%) 62.2(6.0)  0.15(0.01) 0.4%(0.1%) 175.0(59.6) 0.22(0.08) 1.7%(0.6%) 171.8(36.1) 0.64(0.18) 0.3%(0.6%)
s2(BC+MS) 95.6(11.2)  0.28(0.06) 0.3%(0.6%) 67.0(3.8)  0.21(0.04) 0.5%(0.1%) 207.0(95.7) 0.24(0.01) 2.3%(1.2%) 250.4(31.1) 1.21(0.11) 1.3%(0.6%)
s3(BC+HS) 133.2(58.2)  0.37(0.05) 1.3%(0.6%) 102.3(3.2) 0.32(0.01) 0.7%(0.1%) 280.4(77.4) 0.30(0.08) 2.4%(1.2%) - - -
s4(WC+LS)  228.0(136.5)  0.34(0.01)  1.7%(1.5%) - - - - - - - - -
s5(WC+MS)  314.4(40.3)  0.42(0.05)  2.7%(0.6%)

s6(WC+HS)  504.0(114.5)  0.45(0.25)  5.0%(1.0%)

Figure 8. (a, b) Images captured by PAL and the left infrared
camera of Intel RealSense D435. PAL can capture entire ceiling
and part of walls, while the conventional pinhole camera can only
capture a small portion of the ceiling. (c, d) The map created
by our method and DSO respectively. The map created by our
method is more consistent than DSO.

estimation by observing the consistency of the map.
The results of our algorithm and DSO are shown in
figure 8. The map created by DSO is clean, but at the
start and end of the trajectory, the map has obvious
inconsistencies. In contrast, the map created by our
algorithm is sparser, but more consistent. Benefit from
large FoV, tracked points can stay in the FoV for a long
time, and are gradually refined by stereo matching and
windowed optimization. On the other hand, expanding
FoV but not changing the resolution results in the loss
of image details, causing the map to become sparse.
The second dataset was captured in a two-story
building and the full trajectory contained long distance
corridors, up and down stairs, as well as loop in a
hall. All three pinhole camera VO methods failed
in this dataset due to the directing illumination of
lights in the corridor as well as the white ceiling at
the stairs. The results of our algorithm and some
image samples are shown in figure 9. Although there
are some accumulative errors, the map is complete.
From the comparison of raw PAL images and pinhole
camera images, we can see that PAL images have more
textures when going upstairs and downstairs. In the

corridor, lights only occupy a small part of the image,
and our algorithm can still use other stable textures to
achieve positioning. The result of these two datasets
demonstrate the robustness of our algorithm, which is
critical for VIP indoor positioning.

5.2. FEvaluation of the global positioning

We also quantitatively evaluated the positioning
accuracy of the entire system in the world coordinate
system. The experiment field was in a hall. We defined
a start point and an end point in the field, and an
ArUco marker was attached to the wall at the start
point. We walked from the start point to the end point
along a similar route for five times and the full route is
about 50 meters. The positioning error from the end
of the five trajectories to the real end point indicates
the positioning error of the entire system.

The experiment field and five routes are shown in
figure 10. All five trajectories are unified correctly in
the world coordinate system. Route 1 has the largest
positioning error of 1.625m and the error of other
routes are all less than 1m. The results show that our
system has the ability to provide reliable positioning
results in indoor environments

5.8. Discussion

In this subsection, we discuss the advantages of our
positioning framework in assisting VIP.

Compared with narrow FoV camera, PAL is
more suitable for assisting VIP to positioning. PAL
with wide FoV can capture more information in a
less textured indoor environment, which improves the
robustness of our VO algorithm, as demonstrated in
Section 5.1. Besides, the ceiling-view configuration
avoids the influence of dynamic pedestrians on
positioning. Moreover, the compact size of PAL also
makes our system more portable.

To unify positioning results into a world coordi-
nate system, we propose an ArUco marker-based co-
ordinate alignment algorithm. PAL has the ability to
observe 360-degree scenes around the user. The marker
can be attached above the door, and once the user ap-
proaches to the marker, the coordinate alignment is
triggered. For narrow FoV cameras, this method is
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Figure 9. The generated point cloud and tracked trajectory of the large scale real-world dataset. The dataset was captured in a

two-story building, containing long corridors, up and down stairs, as well as loop in a hall.

The comparison of PAL images and

common pinhole images at three places are also shown besides the trajectory. We can observe that PAL images contain much more
information compared with the common pinhole images, which makes our algorithm more robust, especially in the scene with low

textures.

3 Start ———— Route 1
X ——— Route 2
{ Route 3

— Route 4
b — Routes

Figure 10. Trajectories of five routes.

also feasible. But limited by the narrow FoV, the area
that can observe the marker and trigger the coordi-
nate alignment becomes very small. And it is hard for
blind user to move to that area and shoot the marker
to trigger coordinate alignment.

At last, we discuss the positioning precision.
As an odometry, our method estimates the camera
translation and rotation frame-by-frame, so positioning
error will accumulate inevitably. If an ArUco marker
is detected, the positioning result will be aligned to
the world coordinate system and the accumulative

drifts will be eliminated immediately. From the global
positioning experiment in Section 5.2, we can observe
that our method produced a positioning error of up
to 1.625m in a 50m route. This error is acceptable
for normal indoor navigation tasks. Moreover, the
positioning error can be further reduced by adding
more ArUco markers according to the requirement of
applications.

6. Conclusions

In this paper, we proposed indoor positioning
framework based on panoramic visual odometry for
visually impaired people. Based on panoramic annular
lens, our method achieve robust indoor positioning
compared with conventional pinhole cameras. An
easy-to-maintain coordinate alignment method is also
proposed to transform positioning results to the world
coordinate system. In the feature, we plan to add
an auditory-based human-machine interface to make
our system more practical. In addition, we would
also like to research how to reuse map to enhance the
positioning accuracy.
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