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Abstract. Detecting and reminding of crosswalks at urban intersections is one of the most important demands
for people with visual impairments. A real-time crosswalk detection algorithm, adaptive extraction and consis-
tency analysis (AECA), is proposed. Compared with existing algorithms, which detect crosswalks in ideal sce-
narios, the AECA algorithm performs better in challenging scenarios, such as crosswalks at far distances, low-
contrast crosswalks, pedestrian occlusion, various illuminances, and the limited resources of portable PCs.
Bright stripes of crosswalks are extracted by adaptive thresholding, and are gathered to form crosswalks by
consistency analysis. On the testing dataset, the proposed algorithm achieves a precision of 84.6% and a recall
of 60.1%, which are higher than the bipolarity-based algorithm. The position and orientation of crosswalks are
conveyed to users by voice prompts so as to align themselves with crosswalks and walk along crosswalks. The
field tests carried out in various practical scenarios prove the effectiveness and reliability of the proposed nav-
igation approach. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.5.053025]
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1 Introduction
It is inconvenient for people with visual impairments to
travel outdoors due to the lack of capability to perceive sur-
rounding obstacles and hazards. To assist people with visual
impairments to avoid obstacles, various techniques of tra-
versable area detection in a wearable system have been
achieved in our previous work.1–3 However, the crosswalk
detection was not implemented in the wearable system.
Crosswalk perception at urban intersections is one of the
most important demands for people with visual impairments.
Zebra crosswalks are commonly used in many countries,
such as China, Italy, and France. In this paper, a crosswalk
detection algorithm and its interactive approach are elabo-
rated to provide people with visual impairments with
zebra crosswalk navigation when crossing roads.

With the development of computer vision and smart devi-
ces, many researchers are dedicated to helping people with
visual impairments to cross roads.4–16 Most of the detection
algorithms can be categorized into three types of methodol-
ogies: edge-based algorithms, gray-scale pattern-based algo-
rithms, and bright stripe-based algorithms.

1.1 Edge-Based Algorithms
A crosswalk is composed of several bright (white or yellow)
stripes and dark background, so parallel straight edges
of crosswalk stripes are a kind of feature of crosswalks.
Hödlmoser et al.8 detected crosswalks by acquiring the long
edges of the stripes. The edges are extracted by a Canny edge
detector and then merged by a random sample consensus
(RANSAC) algorithm. Similarly, Wei et al.12 applied edge
detector and Hough transformation to crosswalk detection.
Mascetti et al.9,17 used an inertial measurement unit for
ground plane reconstruction, and they utilized edge-based

detection and consistency checks to extract stripes and struc-
tured them into crosswalks. The algorithms perform well on
straight-line crosswalks, whereas it is not valid on polyline
crosswalks. As shown in Fig. 1, polyline crosswalks, which
are composed of polyline stripes, instruct the walking direc-
tion for pedestrians.

1.2 Gray-Scale Pattern-Based Algorithms
As shown in Fig. 1, bright stripes alternate with a dark back-
ground in crosswalks, so the periodic gray value distribution
is also a feature of crosswalks. An assistant device for people
with visual impairments based on template matching of a
binary image was elaborated in Ref. 10, and it requires the
camera to be orthogonal to high-contrast crosswalks. Consi-
dering the sharp contrast near the boundary of black–white
stripes, Uddin and Shioyama4 detected crosswalks by ana-
lyzing bipolarity of a gray-scale histogram. Nevertheless,
the performance of the algorithm is sensitive to the predeter-
mined segmenting size, which has to be switched for differ-
ent scenarios. Poggi et al.14 proposed a crosswalk recognition
algorithm that is based on plane detection and a convolu-
tional neural network, but it needs a RGB-D camera.

1.3 Bright Stripe-Based Algorithms
In these algorithms, the bright stripes of crosswalks are
extracted and analyzed. Zhai et al.15 developed a crosswalk
detection algorithm based on maximally stable extremal
regions and extended RANSAC. Although the algorithm
performs well under different illuminations, it is more suit-
able for traffic surveillance images, where crosswalk stripes
are identical in shape and the background can easily be elim-
inated. Coughlan and Shen5 used figure-ground segmenta-
tion to detect crosswalks; they established the relationship
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between the width and the position of stripes in images. The
algorithm detects crosswalks well under different scenarios,
but the efficiency is not high since a few seconds are needed
to process one image.

Many detection algorithms4,7,10,12,14,18,19 focus on simple
scenarios, where crosswalks are usually in front of users and
take a large proportion of a whole image. However, in prac-
tical crosswalk navigation, crosswalks may present different
orientations and may locate at any position within the field of
view. For those algorithms, the crosswalks at a far distance
from users cannot be detected, which restricts the range of
crosswalk navigation. We aim to tackle the problem in this
paper.

A typical scenario of crosswalk navigation is presented in
Fig. 2. The green point denotes the position of the user, and
the yellow line denotes the horizontal field of view of the
camera. Our system aims to detect the crosswalks both in
front of [Fig. 2(c)] and at a distance from users [Figs. 2(a)
and 2(b)]. Meanwhile, voice prompts are recorded to instruct
the user to align with the crosswalk.

As an assistance approach for people, the detection algo-
rithm should deliver low-false alarms, which is of vital
importance for the safety of users;17 real time is another
requirement for the algorithm to maintain a moderate frame
rate, because the algorithm is implemented in a portable plat-
form with limited resources;17 furthermore, the robustness
must be ensured for the compatibility with various scenarios,
such as various illuminations, low-contrast crosswalks, and
pedestrian occlusion.17

In this paper, a crosswalk detection algorithm and inter-
active approach are presented. The rest of this paper is organ-
ized as follows: in Sec. 2, we present the adaptive extraction
and consistency analysis (AECA) algorithm, which is used
to detect crosswalks from images. Section 3 shows the opti-
mization and performance of the detection algorithm. The
interactive approach and field tests are described in Sec. 4.
A brief conclusion is drawn in Sec. 5.

2 Real-Time Crosswalk Detection Algorithm
To detect crosswalks, we propose the AECA algorithm,
which is shown in Fig. 3. First, adaptive thresholding, where
the threshold is determined by the neural network, extracts
bright-connected components (also called candidates) from a
gray-scale image. A connected component, which is a pro-
spective crosswalk stripe, is defined as a subset of images
where any two points of the subset are connected.20 The
extraneous candidates, such as the sky, are then removed by
analyzing the geometrical properties of candidates. Mean-
while, the candidates, which are similar in shape, are merged
into a new candidate, so as to merge crosswalk stripes, which
are split by obstacles. Finally, those candidates with consis-
tent features are selected by consistency analysis to form the
crosswalk. The position and orientation of the crosswalk are
also obtained.

2.1 Adaptive Candidate Extraction
In contrast to the dark background, the stripes of crosswalks
are bright; thus, they are possible to be extracted from
images. Intended to extract the bright stripes of crosswalks,
we utilize a neural network-based binary thresholding
approach to adapt to different environmental illuminations.
To reduce the computing complexity and improve the perfor-
mance of consistency analysis, the candidates are pruned by
analyzing their geometrical properties. Occasionally, pedes-
trians, as well as obstacles, may occlude crosswalks, thus
split candidates need to be merged into an intact candidate
to achieve complete crosswalk detection.9,17

Fig. 1 Polyline crosswalks.

Fig. 2 A typical scenario of crosswalk detection, (a)–(c) correspond to the images captured at A–C in (d).
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2.1.1 Adaptive thresholding based on neural network

Acquired color frames from the camera are transformed into
gray-scale images, since the brightness of crosswalks is used
in binary thresholding and the hue of crosswalks could be
neglected. To segment images properly, the threshold should
lie between the gray value of bright stripes and dark back-
ground. The fixed thresholding algorithm has a poor perfor-
mance, because the threshold is predetermined and does not
vary with diverse illuminations. Herein, the adaptive thresh-
olding is adopted to address this issue, where the threshold is
not fixed but determined by the input image.

An artificial neural network is a commonly used model to
deal with the adaptive binary thresholding problems. In this
paper, a three-layer feed-forward neural network is used to
express the relation between a gray-scale image and binar-
ization threshold. As shown in Fig. 4, the neural network is
comprised of the input layer, the hidden layer, and the output
layer. Each neuron in the hidden layer is directly linked
with the neurons in input and output layers. The input layer
X ¼ ðx1; x2; : : : ; xiÞ receives the down-sampling gray-scale
image (tiny image). The original gray-scale image is
resampled to a tiny image and unfolded to form the vector

X. Each neuron in the output layer Y ¼ ðy1; y2; : : : ; ykÞ
denotes the possibility that the corresponding gray value
in G ¼ ðg1; g2; : : : ; gkÞT is the suitable threshold of input
image X. Therefore, adaptive thresholding is converted
into a classification task by the neural network, and vector
G ¼ ðg1; g2; : : : ; gkÞT contains the values of the binarization
threshold (namely classes). Thereby, the suitable threshold t
is determined by the product of possibilities and threshold
values

EQ-TARGET;temp:intralink-;e001;326;367t ¼ YG: (1)

Having determined the threshold t, we carry out binary
thresholding on the original gray-scale image and get the
binary image [see Figs. 5(a) and 5(d)]. The bright pixels
are grouped to form connected components, also called can-
didates in this paper.

2.1.2 Candidate analysis

The geometrical properties of candidates are analyzed to
remove the undesired candidates generated by adaptive
thresholding. The size, orientation, and convexity of each

Fig. 3 The flowchart of AECA algorithm. The processing procedures include adaptive candidate extrac-
tion (adaptive thresholding and candidate analysis) and stripe consistency analysis (clustering). The lat-
eral images (a)–(d) present the results of corresponding procedures.

Fig. 4 The structure of neural network for adaptive thresholding.
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candidate are examined, and only those candidates that con-
form to all of the criteria are retained. In addition, candidates
with similar geometrical properties (e.g., orientation, width,
and position in the image) are merged, which restores the
crosswalk stripes separated by pedestrians or other objects.

The size filter is designed to eliminate enormous and tiny
candidates, such as bright pebbles and sky. It does not aim to
select crosswalk stripes from candidates exactly. Therefore,
the upper bound and lower bound of the size filter could be
determined empirically. The maximum and minimum sizes
of candidates (in pixel) are defined as

EQ-TARGET;temp:intralink-;sec2.1.2;63;366sizemax ¼ 0.2 HW and sizemin ¼ 5 × 10−4 HW;

where H and W denote the height and width of the acquired
frame. To avoid eliminating prospective crosswalk stripes,
the interval of the upper bound and the lower bound is inten-
tionally enlarged. For each candidate, the fitting ellipse is
calculated using the algorithm in Ref. 21. The length (the
length of major axis), width (the length of minor axis),
and orientation (the angle of major axis) of the fitting ellipse
are defined as the length, width, and orientation of the cor-
responding candidate, respectively.

The crosswalk stripes are vertical in images, when the
optical axis of the camera is parallel to the long edge of
stripes and the user is in the middle of the road or far from
crosswalks. However, in our scenarios of crosswalk naviga-
tion (Fig. 2), that case is not considered. Hence, the candidate
which has a small angle (e.g., <20 deg) with the vertical
direction is removed. The crosswalk stripe is convex,
which means that its centroid is within its boundary.
Thereby, the candidate whose centroid is out of the boundary
is removed. The processing results after candidate reduction
are shown in Figs. 5(b) and 5(e).

Two or more candidates with identical orientation and
width (child candidates) are merged into one new candidate
(parent candidate), if the orientations of child candidates
are identical to the link of their centroids. Later, the parent

candidate and its child candidates simultaneously exist
among candidates, as shown in Figs. 5(c) and 5(f).

All of the remaining candidates are collected to form
candidate set C, which will be dealt with in consistency
analysis.

2.2 Consistency Analysis
The candidate sets are defined as C ¼ fskj1 ≤ k ≤ ng,
where n is the size of the set, and sk is the candidate with the
index k. In set C, crosswalk stripes and extraneous candi-
dates simultaneously exist. Fortunately, the crosswalk stripes
possess consistency, such as consistent color, consistent ori-
entation, etc.; hence, it is possible to select them from the
candidate set by consistency analysis.

Consistency analysis, which is derived from the
RANSAC algorithm,22 selects the optimal consistency set S�
from candidate set C as shown in Fig. 6. Consistency
analysis obtains different consistency sets by starting with
different initial candidate combinations. In the proposed con-
sistency analysis, both the model constructed by initial can-
didates and the clustering rules to gather consistent
candidates are specially designed for crosswalk detection.

Two different candidates ðsi; sjÞ are chosen as the initial
candidates from set C. In view of the limited size of set C, all
of the pairwise initial candidates (parent–child pairs
excluded) will be traversed in the algorithm. Consistency
set Sij is defined as the clustering result starting with candi-
dates si and sj. To set a baseline for candidate clustering, a
straight line lij is determined by the centroids of si and sj.
The line simulates the extending direction of the crosswalk.
Starting with si and sj, the consistent candidate sk is added
into Sij, if it conforms with consistency criteria as follows:

1. sk must be close to line lij, because the stripes of cross-
walks are bound to gather along the extending
direction.15 Ideally, the centroid of candidate sk should
be on the line lij. The error tolerance of distance
between candidate centroid and line is defined as El.

Fig. 5 The results of candidate analysis. (a) and (d) Adaptive binary thresholding. (b) and (e) Candidate
pruning by size, orientation, and convexity. (c) and (f) Candidate merging, where candidates are pre-
sented as green boxes with red centroids.
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2. The orientation of sk is not in parallel with line lij,
because the extending direction of crosswalks is
orthogonal to the orientation of bright stripes. Here,
we define the lower bound of angle difference between
line and candidate as Ea.

3. Taking sk as a quadrilateral, the opposite edges of sk
must intersect with line lij. Notice that the adjacent
edges of sk should not intersect with line lij.

Parent and child candidates are mutually exclusive among
consistency set Sij. If they exist simultaneously, child can-
didates are pruned. To make candidates in set Sij more con-
sistent, the color and orientation of candidates are also
considered. The mean color and orientation are calculated
among all the candidates in Sij. The candidate, whose color
or orientation is far from the mean value, is removed from set
Sij. The tolerances of candidate color and orientation are
defined as Ec and Eo, respectively. After removing unquali-
fied candidates from set Sij, line lij is again fitted using all
the candidates in Sij by least squares method.

The cross ratio, defined in Ref. 4, is an important perspec-
tive-invariant property for crosswalks. Therefore, validating
the cross ratio of candidates in Sij is an important approach
to eliminate outliers. Along the fitting line lij, all of the can-
didates in Sij are sorted by their position. Four points are
located at the intersection of fitting line lij and edges of
two adjacent candidates in set Sij. The cross ratio, derived
from the four points, should be equal to 0.25, if the width

of crosswalk stripe is equal to the width of the dark interval.
The practical cross ratio may vary with a different stripe–
interval ratio. Thereby, the lower bound and upper bound for
the cross ratio are defined as Ermin and Ermax. From the begin-
ning to the ending of set Sij, each two adjacent candidates (e.
g., sp, sq, p < q) are utilized to calculate the cross ratio. If the
cross ratio falls into ½Ermin; Ermax�, sp and sq are regarded as
two adjacent stripes of a crosswalk. On the contrary, sp and
sq do not belong to the same crosswalk, and Sij is segmented
into two subsets with sp as the ending of the first subset and
sq as the beginning of the second subset.

After examining entire cross ratios, only the candidates of
the largest subset are retained in set Sij. Generally, the num-
ber of crosswalk stripes is larger than 3. Thereby, we define
the minimum size of the consistency set as 3, and the con-
sistency set whose size is smaller than the minimum size is
abandoned.

For the final consistency sets fSijg, we calculate variance
of each Sij as Variance ¼ DTC. Each element in vector D ¼
½D1 D2 D3 D4� is a variance that describes a sort of dispersion
degree of Sij. Vector C ¼ ½C1 C2 C3 C4� denotes the weights
for corresponding variances. The detailed definitions of var-
iances are included in Table 1, where N is the number of
candidates in consistency set Sij.

In the variance of length and width, different estimated
values (L 0

r and W 0
r) for each candidate, instead of the same

mean value, are utilized to measure the dispersion of the
set, because the length and width of stripes have intrinsic

Fig. 6 The flowchart of consistency analysis.
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dispersion due to perspective. The perspective relation is
expressed by a linear model, and the parameters (a, b, c,
and d) are fitted by the least square method using candidates
in consistency set Sij.

Among fSijg, the set with the smallest variance (S 0) is
regarded as the most consistent set. However, it is not nec-
essarily the optimal set, in view that the small set is prone to
have small variance. To make the detected crosswalk as
intact as possible, the optimal consistency set S� is defined
as the largest set, which contains all of the candidates in S 0.

The optimal consistency set S� is the desired crosswalk
detection result, and then we assume that the crosswalk is
composed of candidates in S� and the mean orientation of
candidates in S� (om) is the orientation of the crosswalk. If
none of the consistency set exists, we believe that the cross-
walk does not exist in the current image.

3 Parameter Optimization and Detection
Performance

3.1 Optimization of Parameters in Adaptive
Thresholding

The adaptive thresholding training dataset fðXl; tlÞj1 ≤
l ≤ 277g (available at Ref. 23) is taken advantage of to deter-
mine the optimal structure and parameters of the neural net-
work. Herein, Xl is a down-sampled image that contains
crosswalks, tl is the manually labeled threshold that sepa-
rates crosswalks from background in Xl, and 277 is the
number of training data. According to Eq. (1), we construct
the output layer Yl ¼ ðy1; y2; : : : ; ykÞ of the training data
ðXl; tlÞ by manually labeled threshold tl and vector G ¼
ðg1; g2; : : : ; gkÞT

EQ-TARGET;temp:intralink-;e002;63;262Yl ¼ arg min
Y

jtl − YGj s:t: Yl ∈ fe1; e2; : : : ; ekg; (2)

where fe1; e2; : : : ; ekg are the natural bases of Rk (k-dimen-
sional vector space), namely Yl has only one nonzero com-
ponent and it equals 1.

Apparently, the vector G is required to construct the out-
put layer for training data. The number of components inG is
identical to that of the neurons in output layer Y. The values
of components in G influence the number distribution of
training data among different classes (different neurons of
output layers). Therefore, a suitable G, which results in bal-
anced data between classes, is important for the performance
of adaptive thresholding. In Table 2, the number k and values
of components in G are presented, and the numbers of train-
ing data in different classes are also listed.

For high generalization performance, an adaptive thresh-
olding testing dataset (available at Ref. 23) is utilized to opti-
mize the structure of the neural network. In testing data, the
position of a crosswalk in an image and the suitable binary
threshold are labeled. Hence, for the crosswalk region (cr) in
an image, the error (Da) between adaptive thresholding (Ia)
and thresholding with the labeled threshold (Il) is taken as
the criterion to evaluate the performance of neural structure,
which is

EQ-TARGET;temp:intralink-;e003;326;514Da ¼
X

ði;jÞ∈cr
jIaði; jÞ − Ilði; jÞj: (3)

Obviously, the better the neural network performs, the less
error Da has. Using training data, 80 different network struc-
tures are trained by the resilient propagation algorithm.24

Among those structures, the neural network with the 9 × 9
tiny image (namely 81 neurons in input layer) and 24 neu-
rons in hidden a layer achieves the least error Da. Therefore,
the network with 81 neurons in the input layer (i ¼ 81) and

Table 1 Variances definition and significance.

Definition of variance Additional definition Significance

D1 ¼ 1
N

P
0<r<Nd

2
r — Variance between candidates’ centroids to the fitting line l

D2 ¼ 1
N

P
0<r<N ðLr − L 0

r Þ2 L 0
r ¼ ayr þ b Variance of length among candidates

D3 ¼ 1
N

P
0<r<N ðWr −W 0

r Þ2 W 0
r ¼ cyr þ d Variance of width among candidates

D4 ¼ 1
N

P
0<r<N ðOr − omÞ2 om ¼ 1

N

P
0<i<NOi Variance of orientation among candidates

Table 2 The training data distribution among the different classes of
neural network.

G Y Number of data

g1 ¼ 30 e1 6

g2 ¼ 80 e2 21

g3 ¼ 110 e3 20

g4 ¼ 130 e4 25

g5 ¼ 140 e5 39

g6 ¼ 150 e6 21

g7 ¼ 160 e7 37

g8 ¼ 170 e8 48

g9 ¼ 180 e9 32

g10 ¼ 195 e10 21

g11 ¼ 215 e11 7

Total 277
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24 neurons in the hidden layer (j ¼ 24) is chosen as the opti-
mized neural network.

To prove that the network-based thresholding is eligible to
extract crosswalks from the background, Otsu’s method,25 as
a reference, is also applied to the adaptive thresholding test-
ing dataset. The difference (Do) between Otsu’s thresholding
(Io) and thresholding with the labeled threshold (Il) is com-
puted as

EQ-TARGET;temp:intralink-;e004;326;432Do ¼
X

ði;jÞ∈cr
jIoði; jÞ − Ilði; jÞj: (4)

For each testing datum, we get a ratio r of optimized neu-
ral network error Da and Otsu’s method error Do as

EQ-TARGET;temp:intralink-;e005;326;374r ¼ Da

Do
: (5)

The mean ratio among testing datasets is 0.86, which
demonstrates that the proposed adaptive threshold is superior
to Otsu’s method.

Fig. 7 Data set for tuning parameters in the algorithm.

Table 3 Parameter combination of detection algorithm.

Parameter
Initial
value

Minimal
value

Maximal
value

Optimized
value

El 0.03 W 0.001 W 0.2 W 0.1 W

Ea 20 0 30 15

Ec 100 25 200 50

Eo 5 0 20 10

E rmin 0.1 0.05 0.25 0.2

E rmax 1 0.25 2 0.6

C1 0.5 0 1 0.05

C2 0.5 0 1 0.3

C3 0.5 0 1 0.3

C4 0.5 0 1 1
Fig. 8 ROC curve on training dataset.
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Fig. 9 Crosswalk detection results using AECA algorithm on testing dataset. The detected stripes of
crosswalks are labeled with green borders. (a) The detection results of crosswalks at far distances,
(b) the detection results of crosswalks at close distances, (c) the detection results of crosswalks in
front of users, (d) the crosswalks detection results in the scenarios of low contrast, and (e) the detection
results where crosswalks are partially occluded.
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Fig. 10 Crosswalk detection results using bipolar algorithm on testing dataset. The detected crosswalk is
labeled with white mask. (a) The detection results of crosswalks at far distances, (b) the detection results
of crosswalks at close distances, (c) the detection results of crosswalks in front of users, (d) the cross-
walks detection results in the scenarios of low contrast, and (e) the detection results where crosswalks
are partially occluded.
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3.2 Optimization of Parameters in Consistency
Analysis

We determine the parameters of the proposed algorithm
through the manually labeled crosswalk dataset. In this
paper, we establish a training and testing dataset to develop
the algorithm referring to Ref. 23. The training set includes
up to 381 color images, where the quadrilateral boundaries of
crosswalks are labeled as ground truth. The crosswalks in the
training set have various orientations, sizes, and bright-
nesses, as shown in Fig. 7.

Precision and recall are usually used as the criteria of
detection performance. If all of the detected candidates
are inside the ground truth, the detection result is defined
as true positive; otherwise, it is defined as false positive.
If there is no crosswalk being detected, which is consistent

with the ground truth, it is defined as true negative.
Comparatively, if the ground truth is positive, it is defined
as false negative. For all of the detection results of the data-
set, we count the total number of true positive, false positive,
and true negative, and define them as TP, FP, and FN, respec-
tively. Herein, the precision and recall of crosswalk detec-
tions are defined as

EQ-TARGET;temp:intralink-;sec3.2;326;675Precision ¼ TP

TPþ FP
and Recall ¼ TP

TPþ FN
:

Precision reflects the capability to avoid false alarms, and
recall denotes the sensitivity of crosswalk detection. To
achieve the optimal precision and recall of crosswalk detec-
tion, different parameter values are tried on the training data-
set. The parameters to be tuned in consistency analysis include
the error bounds (El, Ea, Ec, Eo, Ermin, and Ermax) and the
variance weights (C1, C2, C3, and C4). An initial parameter
combination is assigned to start the tuning procedure, which is
shown in Table 3. Different values between the minimum and
maximum are tried to find the optimized value of that param-
eter, where both precision and recall are high.

For the variance weights, a grid search is executed to find
four optimized parameters simultaneously. For the error
bounds, only one parameter is changing during a tuning
course in that the bounds are independent of each other to
some degree. After tuning a parameter, the optimized value
is updated into the parameter combination, which is prepared
for the next tuning. The precision and recall of partial param-
eter combinations (black points) as well as the fitted receiver
operating characteristic (ROC) curve, which is generated by
plotting the recall on the vertical axis and 1−precision on the
horizontal axis,26 are presented in Fig. 8.

To achieve optimal performance, the coefficients are
determined when crosswalk detection has high precision
and recall. There is a trade-off between precision and recall,
but in our case, for the crosswalk navigation utility, the
precision is of more importance since false alarms are
more hazardous than poor sensitivity. Plenty of parameter
combinations are eligible for a good performance, and a pos-
sible parameter combination is presented in Table 3.

Table 4 Recall and precision of crosswalk detection.

Algorithm Scenarios FN FP TN TP
Recall
(%)

Precision
(%)

AECA Total 122 39 104 187 60.1 84.6

Occlusion 16 7 0 20 55.6 74.1

Far 35 2 2 26 42.6 92.9

Close 9 1 0 26 74.3 96.3

Frontal 76 24 9 116 60.4 82.9

Bipolarity Total 159 36 95 162 50.5 81.8

Occlusion 25 0 3 15 37.5 100.0

Far 49 10 2 4 7.5 28.6

Close 11 1 0 24 68.6 96.0

Frontal 78 3 11 133 63.0 97.8

Fig. 11 (a) Intoer: the wearable navigation system for people with visual impairments. (b) A subject is
wearing the navigation system.
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3.3 Performance on Testing Dataset
We validate the efficiency of the algorithm on the testing set,
which is constituted of up to 452 color images derived from
nine segments of video. We compare the AECA algorithm

with the bipolarity-based algorithm proposed in Ref. 4. The
detection results of some typical scenarios using AECA and
the bipolarity-based algorithm are shown in Figs. 9 and 10,
respectively. Figs. 9(a)–9(c) and 10(a)–10(c) show crosswalk
detection results at far distances, at close distances and in
front of users, respectively. The results in Fig. 9 illustrate
that the crosswalks at different distances can be detected
effectively by the AECA algorithm. Nevertheless, using the
bipolarity-based algorithm, the crosswalks at far distances
fail to be detected and the crosswalks at close distances are
detected incompletely, as shown in Fig. 10. Figures 9(d) and
10(d) present the crosswalk detection results in the scenarios
of low contrast, which means the gray value of crosswalk
stripes is close to that of the background. It can be seen that
the AECA algorithm performs well, while it is difficult for
the bipolarity-based algorithm to detect crosswalks in such
scenarios. In Figs. 9(e) and 10(e), the detection results, where
pedestrians or obstacles occlude the crosswalk, are pre-
sented. Compared with the ineffective performance of the
bipolar algorithm, the crosswalks are detected by the AECA
algorithm.

Fig. 12 Aligning users with crosswalks from the far to near.

Table 7 The field tests under different testing scenarios.

Scenarios
Trial
times

Detected
trials

Aligned
trials

Mean alignment
time (s)

Daytime 31 22 21 32.4

Night 4 2 2 32.5

Sunny day 21 15 15 33.3

Rainy day 10 7 7 30.4

Polyline crosswalks 15 15 14 28.6

Table 5 Voice prompt rules.

Mean orientation range Bottom of crosswalk Voice prompt

om < −3 deg or om > 3 deg by < 0.8 H Go ahead

om < −3 deg by > 0.8 H Turn left

om > 3 deg by > 0.8 H Turn right

−3 deg < om < 3 deg cx < W∕3 Move to left

−3 deg < om < 3 deg cx > 2 W∕3 Move to right

−3 deg < om < 3 deg W∕3 < cx < 2 W∕3 Cross the road

Table 6 The statistics of field tests.

Subject Trial times Detected trials
Aligned
trials

Mean alignment
time (s)

I 8 6 6 38.3

II 8 5 5 29.5

III 6 4 4 33.8

IV 7 6 5 29.4

V 6 3 3 30.0
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As shown in Table 4, our algorithm achieves higher pre-
cision and recall, especially under the scenarios of occluded
crosswalks and far crosswalks. The bipolarity-based algo-
rithm has relatively low precision and recall, because it is
sensitive to the predetermined segmenting size of patches.
Therefore, the crosswalk, whose size is not matched with
predetermined patch size, cannot correctly be detected.

4 Interactive Approach and Field Tests

4.1 Interactive Approach
For people with visual impairments, the desired aid system
should not only detect crosswalks from images, but also con-
vey the orientation and position of crosswalks to users, so as
to instruct them to align themselves with crosswalks. Differ-
ent auditory interfaces for guiding people with visual impair-
ments during crossing roads are discussed in Ref. 27, and a
speech-based interface is one of the best guiding modes. As
shown in Fig. 11, as the wearable navigation system used in
this paper, Intoer (commercially available at Ref. 28) is com-
posed of a camera, a pair of bone-conducting earphones, and
a portable computer.3 Voice prompts from the bone-con-
ducting earphone, which does not block the hearing com-
pletely such as an ordinary earphone,27 are utilized as the
interactive approach in the wearable system.

Similar to the interaction paradigm proposed in Ref. 29,
we define three typical crosswalk-interactive paradigms:
crosswalks at far distances from the user, crosswalks at close
distances from the user, and crosswalks in front of the user,
which correspond with three scenarios in Sec. 1. In Fig. 2(a),
the crosswalk is at far distances from the user, and the system
informs the user to keep walking forward. In Fig. 2(b), the
crosswalk is close to the user, and the system informs the

user to turn right or left, so as to face to the crosswalk. In
Fig. 2(c), the crosswalk is in front of the user, and the system
informs the user to move right or left, so as to align himself/
herself with the crosswalk. According to different crosswalk
detection results, we set corresponding voice prompts. The
mean orientation of crosswalk stripes (om), the bottom of the
crosswalk in image (b), and the center of crosswalk (c) are
utilized to determine the suitable prompt. The detailed rules
are listed in Table 5.

4.2 Field Tests
The portable PC with an Intel Atom x5-Z8500 processor and
2 GB memory is chosen as the computing platform.30 The
resolution of acquired color images needs to be moderate,
since sufficient processing speed should be guaranteed on the
portable PC. However, images with limited resolution may
make crosswalks at far distances unnoticeable. Therefore, in
our case, the resolution is set to 1280 × 720.

To evaluate the performance of the detection algorithm
and interactive approach comprehensively, we carried out
field tests in another city, which is different from the city
of the dataset. Up to 35 trials were completed by five
subjects, whose eyes were covered during the test.
Starting at 10 m away, they followed the voice prompts to

Fig. 13 Crosswalk detection results of field tests.

Table 8 The incomplete detection results and alignment time.

Detection result Trial times Mean alignment time (s)

Complete 15 28.2

Incomplete 9 32.4
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align themselves with crosswalks. When the subject thinks
he or she has aligned with crosswalks, the test is ended. If the
subject is facing the walking orientation of crosswalks and
within the region of crosswalks, the alignment is successful
and the alignment time is recorded. Otherwise, the alignment
fails. During tests, crosswalk detection results are observed.
If the crosswalks are detected steadily, the test is seen as a
detected trial. The statistics of field tests are shown in
Table 6.

Out of 35 tests, crosswalks in 24 trials are correctly
detected, and nearly all subjects align themselves with cross-
walks correctly if crosswalks are detected. The mean align-
ment time for all of the subjects is 32 s. As shown in Fig. 12,
each column presents a field test at an intersection. The three
rows of images from top to bottom present the crosswalks at
far distances, at close distances and in front of users,
respectively.

We carried out the field test in different environments,
including daytime, night, a sunny day and rainy day, and
the results per testing condition are shown in Table 7. The
tests confirm the validation of the detection algorithm and
interactive approach. Polyline crosswalks could be detected
by our algorithm, as shown in Table 7 and Figs. 12 and 13.

On the experimental platform, the frame rate of crosswalk
detection is 15 to 30 fps, which is sufficient for blind assis-
tance usage. More crosswalk detection results of field tests
are presented in Fig. 13.

The main problem for the algorithm is that not all of the
crosswalk stripes are included in the detection results.
Although it does not affect the precision and recall of
the algorithm, it affects the performance of the interactive
approach. As shown in Table 5, when the crosswalk detec-
tion result is close to the bottom of the image, the voice
prompt instructs the user to turn right or left, so as to face
the crosswalk. Due to the incomplete detection results, the
close crosswalk stripes may miss, which results in mislead-
ing voice prompts. In the field test, the users spent more time
to align themselves with crosswalks, as shown in Table 8.

5 Conclusion
In this paper, we implement the AECA algorithm and the
interactive approach on a wearable device to help people
with visual impairments cross roads. The experiment proves
that the proposed detection algorithm achieves better preci-
sion than the conventional algorithm in different scenarios.
On the testing dataset, the precision is higher than 80%
along with the recall higher than 60%. We have accom-
plished several challenges: crosswalk detection at far distan-
ces, pedestrian occlusion, low-contrast crosswalks, various
illuminances, and the limited resources of the portable
PC. The field tests illustrate the valid utility of the interactive
approach as well as a good frame rate of 15 fps.

In future work, the algorithm will be improved to achieve
complete crosswalk detection. Furthermore, intersection rec-
ognition could be developed for comprehensive assistance
on navigation.
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