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Abstract. Introduction of RGB-D sensors is a revolutionary force that offers a portable, versatile and cost-effective solution of 

navigational assistance for the visually impaired. RGB-D sensors on the market such as Microsoft Kinect, Asus Xtion and Intel 

RealSense are mature products, but all have a minimum detecting distance of about 800mm. This results in the loss of depth 

information and the omission of short-range obstacles, posing a significant risk on navigation. This paper puts forward a sim-

ple and effective approach to reduce the minimum range that enhances the reliability and safety of navigational assistance. 

Over-dense regions of IR speckles in two IR images are exploited as a stereo pair to generate short-range depth, as well as 

fusion of original depth image and RGB image to eliminate misjudgment. Besides, a seeded growing algorithm of obstacle 

detection with extended depth information is presented. Finally, the minimum range of Intel RealSense R200 is decreased by 

approximately 75%, from 650mm to 165mm. Experiment results show capacity of detecting obstacles from 165mm to more 

than 5000mm and improved performance of navigational assistance with expansion of detection range. The presented approach 

proves to be of qualified accuracy and speed for guiding the visually impaired. 
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1.  Introduction 

According to World Health Organization, 285 mil-

lion people are estimated to be visually impaired and 

39 million are blind in the whole world [1]. Visually 

impaired people have many difficulties in daily life. 

For instance, it poses challenges to visually impaired 

people to navigate through real-world obstacles be-

cause they can’t perceive their surroundings quite 

well. Modern solutions for navigational assistance 

have been making progressive improvement with the 

increased popularity of RGB-D sensors [2,3,4]. 

Ranging technique with RGB-D sensors such as 

Microsoft Kinect, Asus Xtion and Intel RealSense is 

a ubiquitous solution for navigational assistance with 

good portability, functional diversity and cost-

effectiveness [5,6,7]. The sensor provides common 

interface with processors, and can be conveniently 

integrated in a wearable assistance device thanks to 

its small size and light weight. These RGB-D sensors 

capture a high-resolution RGB stream and a depth 

stream simultaneously at more than 30FPS. In addi-

tion, cost of such RGB-D sensors is less than 

200USD. As shown in Figure 1, Intel RealSense 

R200 is a typical example of RGB-D sensor. Based 

on the advantages above, these commercial RGB-D 

sensors are quite suitable for navigational assistance. 

 

 

Fig. 1. Intel RealSense R200. The sensor is small and light so it is 

a good option for navigational assistance from miniaturization 
perspective. 



However, RGB-D sensors have some restrictions. 

One of the restrictions is a minimum detection range 

of about 800mm. For Microsoft Kinect and Asus 

Xtion, the minimum range is 800mm [3,8] while the 

minimum range is 650mm for Intel RealSense R200. 

In the case of Intel RealSense R200, as shown in 

Figure 2, if an object is within the detection range of 

650mm, there is a black hole in the depth image, and 

pixels in the black hole have no valid depth. 

 

 

(a) RGB image acquired with Intel RealSense R200 

 

(b) Depth image acquired with Intel RealSense R200. The hand 

is within minimum range of detection so as to form black 
holes and mismatching pixels in depth image. 

Fig. 2. Image acquisition 

 

These RGB-D sensors consist of an IR laser pro-

jector which emits a structured infrared light pattern 

of IR laser speckles. A series of patterns is projected 

into scenes to encode real-world 3D points, and the 

IR sensor captures the speckles with a high sampling 

speed [9]. Size, shape and shift of a speckle change 

with the variation of the distance from the encoded 

object to the sensor. Speckles are measured in IR 

image to calculate disparity and then generate a depth 

image. However, short-range speckles are hard to 

identify due to over-exposure in IR image, which 

means the reflected structured light pattern is suffi-

ciently bright to saturate the image sensor. As a result, 

these RGB-D sensors leave out short-range speckles 

which restricts the minimum range of detection, i.e. 

about 800mm. In the case of navigational assistance, 

obstacles in close blind area cannot be easily detected 

and leave sight impaired people vulnerable in un-

known, dynamic environments. Thereby, short-range 

depth imaging is desirable. 

Recently, some methods have been proposed to 

tackle the problem of short-range detection of RGB-

D sensors such as modification of optics of the sensor, 

deployment of multiple RGB-D sensors, combination 

with RGB information, 3D simultaneous localization 

and mapping (SLAM) based solution [10]. 

As for modification of optics, Nyko Zoom is a 

commercial wide-angle optical adaptor for Microsoft 

Kinect. Although it reduces both the minimum and 

maximum range, pronounced distortion in depth im-

age is introduced. M. Draelos compensated the lens-

introduced distortion through a depth calibration pro-

cedure and decreased the minimum range of Kinect 

by approximately 30% with Nyko Zoom [11]. How-

ever, the minimum detection range of RGB-D sen-

sors is decided more by the over-exposure in IR im-

age than the narrow horizontal field of view. As a 

result, this method still fails to give depth infor-

mation of objects within 400mm. 

Fusion of multiple RGB-D sensors is implemented 

by some researchers in order to obtain a wilder field 

of view and decrease the minimum detection range. 

However, deploying multiple RGB-D sensors with 

overlapping views produces interference effects from 

overlapping speckles. F. Alhwarin used two IR imag-

es of each two Asus Xtions as a stereo pair to gener-

ate a depth map [8]. This method sidesteps the prob-

lem of the interference. With a baseline of 0.045m, 

the minimum distance of Asus Xtion is decreased 

from 800mm to 500mm. However, this method is 

still unable to detect obstacles within half a meter. Y. 

Shröder used a spinning shutter to block the IR emit-

ter on each Kinect in turn to mitigate the interference 

[12]. However, the framerate decreases a lot as laser 

speckles from each Kinect cannot access the scene all 

the time. Moreover, a spinning shutter is too heavy to 

be integrated in a navigational assistance system. A. 

Maimone applied a small vibration with a simple 

motor to a subset of Kinects to alleviate the interfer-

ence [13]. However, this method contributes a side-



effect: blurring in color images. Moreover, move-

ment of sensors would pose great challenges for de-

tection algorithms to give accurate locations of ob-

stacles in navigational assistance. 

Combining RGB image with either depth image or 

IR image is adopted by some researchers to cope 

with the range limitation. In order to provide the vis-

ually impaired with obstacle-free paths, A. Aladrén 

firstly detects ground with RANdom SAmple Con-

sensus (RANSAC), then expends the depth based 

ground segmentation with RGB image [14,15,16]. 

This method is quite suitable to expand detection 

result to longer range, but not robust enough to get 

short-range information. Moreover, the algorithm 

runs at a speed of approximately 0.3 frames/s, which 

fails to provide real-time implementation. W. Chiu 

complemented the depth image of Microsoft Kinect 

by a cross-modal stereo matching between RGB and 

IR camera [17,18]. The minimum range is reduced, 

since this method could obtain wide overlapping field 

due to short baseline of IR camera and RGB camera 

of the RGB-D sensor. Nonetheless, short-range ob-

jects tend to be texture-less and change in IR image 

with emitting speckles, making robust depth estima-

tion extremely difficult. As a result, cross-modal ste-

reo matching is not framed to tackle the minimum 

range problem. 

In terms of 3D simultaneous localization and map-

ping (SLAM), the based solution could build a vicini-

ty map. Therefore, instead of original depth image, 

short-range information is acquired through the vi-

cinity map. Y.H. Lee adopted a metric-topological 

SLAM approach to provide the visually impaired 

with 3D traversability on the map [19,20]. This 

method achieves processing speed of 12-15Hz and 

helps the visually impaired improve the mobility per-

formance. Although SLAM based navigation can be 

real-time through optimization, it will lose connec-

tion with the vicinity map if there are not enough 

features in the scene. Especially, it is notable that low 

textured area affects the visual odometry perfor-

mance. 

Though many related work have addressed both 

problems, they do not decrease the minimum range to 

a large extent or cause intolerable side effects in nav-

igational assistance.  In this paper we present a novel 

approach to make full use of over-dense speckle re-

gions in IR image. A commercial RGB-D sensor In-

tel RealSense R200 is implemented which consists of 

two IR sensors. Over-dense regions of IR speckles 

are extracted, which secludes short-range objects. 

And these regions in two IR images are exploited as 

a stereo pair. Since over-dense speckle regions tend 

to be poorly-textured, a stereo algorithm based on 

local correspondences is adopted to acquire an edge 

disparity image [21,22,23]. This allows efficient ex-

ploitation of over-dense regions and real-time pro-

cessing. Thereby, depth of short-range obstacle can 

be retrieved from the corresponding edge disparity 

pixels. However, objects sometimes will be mistak-

enly recognized as short-range obstacles. In this case, 

we do not choose to use IR images from the sensor, 

but we fuse original depth image and RGB image to 

eliminate some misjudgment such as luminous ob-

jects in the distance. After short-range depth infor-

mation complemented, a seeded region depth grow-

ing algorithm is presented to detect obstacles. 

The main advantages of our approach can be 

summarized as follows: 

– It provides a novel solution to decrease the 

minimum range of RGB-D sensor to a large 

extent. 

– The safety and reliability of navigational as-

sistance for vision impaired people with RGB-

D sensor can be improved dramatically. 

– Over-dense speckle regions are fully consid-

ered by RGB-D sensors based on structured 

light. 

– The approach is simple and computationally 

efficient, providing real-time implementation. 

– The seeded region depth growing algorithm 

detects obstacles with qualified robustness and 

speed. 

The paper is organized as follows. In Section 2, 

the approach is elaborated in detail. In Section 3, 

substantial experiments demonstrate the approach’s 

effectiveness in terms of decreasing minimum range 

of RGB-D sensors and improving performance of 

navigational assistance. In Section 4, relevant con-

clusions are drawn and future work is expected. 

2. Approach 

In this section, the approach of short-range depth 

acquirement and obstacle detection algorithm is 

elaborated in detail. The approach is described in 

terms of sensor attribute, depth generation and obsta-

cle detection. 

2.1.  Sensor attribute 

A RGB-D sensor Intel RealSense R200 is used in 

our case to capture scenes. As shown in Figure 3, 

Intel RealSense R200 consists of a RGB camera with 



a resolution of 1920 × 1080 pixels and two IR cam-

eras with a resolution of 628 × 468 pixels. The IR 

cameras are set apart with a baseline of 70mm, cali-

brated. Original depth information from Intel Re-

alSense R200 can be divided into three ranges: 

– 0- 650mm: There is no valid depth, and we at-

tempt to acquire depth in this range. 

– 650mm- about 2700mm: Laser speckles are 

well recognized, and depth is measured 

through speckle changes. The max range, i.e. 

2700mm, is floating with laser power and am-

bient light. 

– More than 2700mm: Depth is measured 

through stereo matching. 

 

 

Fig. 3. Intel RealSense R200 consists of an imaging processor, a 

IR laser projector, a RGB camera and two IR cameras. 

 

2.2. Camera calibration 

Before short-range depth generation, an offline 

calibration process is performed on two IR cameras 

and the RGB camera of Intel RealSense R200. The 

camera calibration technique comprises intrinsic cal-

ibration, stereo calibration and stereo rectification 

[24]. The calibration parameters of Intel RealSense 

R200 are shown in Table 1 and these parameters are 

used for depth generation and information fusion. 

Stereo rectification is performed on raw IR images to 

align scanlines to simplify disparity calculation. As a 

result, the task of extracting depth image from left IR 

image and right IR image turns into estimation of 

disparity map [25]. 
 

Table 1 

Calibration parameters of Intel RealSense R200 

Calibration parameters Values (the default 
unit is pixels) 

Right IR camera’s focal length (581.48, 586.05) 

Right IR camera’s principle point (333.42, 235.84) 

Left IR camera’s focal length (575.79, 579.88) 

Left IR camera’s principle point (339.62, 237.37) 

Baseline of IR cameras 69.95mm 

RGB camera’s focal length (1408.83, 1409.15) 

RGB camera’s principle point (980.52, 521.50) 

Baseline of RGB camera and Left camera 56.99mm 

2.3. Disparity generation 

As shown in Figure 4, the disparity computation 

procedure comprises capturing images, extracting 

over-dense speckle regions, eliminating misjudgment 

and block matching. Firstly, the RGB-D sensor cap-

tures a RGB image, a depth image and two IR images. 

Short-range objects are encoded with dense speckles, 

which results in over-exposure in IR images. Second-

ly, we aim to extract over-dense speckle regions in 

IR images. Since the speckles are hard to recognize, 

the RGB-D sensor can’t calculate depth at these pix-

els. Rather than ignore the over-dense regions, we 

take full advantage of these regions which lacks tex-

tures. A typical edge processing is employed on two 

IR images. We can easily extract these regions in 

edge image since over-dense regions are edge-less. In 

our case, the output is binary images given by the 

Canny edge detector. However, there are other re-

gions without edges too, which inevitably cause 

some misjudgment. As a result, elimination of mis-

judgment is required to mitigate interference of spe-

cial objects. For instance, shinning objects in the dis-

tance appear to be over-dense speckle regions in IR 

images. In this work, two misidentification elimina-

tion rules are determined: 

– In the original depth image, if a pixel has a 

valid depth, this pixel is not within minimum 

range. 

– In the RGB image, if a pixel has an abnormal-

ly high brightness, this pixel is regarded as 

misidentification. 

 



 

Fig. 4. The disparity generation pipeline 

 

After implementation of the rules, over-dense re-

gions correspond to short-range objects. Furthermore, 

over-dense speckle regions in two rectified IR images 

are exploited as an IR stereo pair for disparity calcu-

lation. Since over-dense regions are less of textures, a 

blocking matching algorithm based on local corre-

spondence is applied, to determine edge disparities of 

these regions, which indicates the difference in locat-

ing corresponding pixels in two IR images [26]. Gen-

erally, block matching requires to define a matching 

score and an aggregation window. In this work, a 

common dissimilarity score is utilized to measure the 

sum of absolute intensity differences (SAD) [22,27]. 

SAD is defined as Eq. (1): 

 left rightSAD(u,v)= Sum I (u,v) - I (u,v')               (1) 

The block matching algorithm has four steps: 

– Construct an aggregation window. The block 

window is similar to a convolution kernel in 

use. 

– Use the window to cover a block of left IR 

image, and obtain sum of pixel intensities in 

the window. 

– Use the window to cover a block of right IR 

image with shifting horizontal position of the 

window, sums of pixel intensities and SAD of 

different positions are obtained. 

– After calculating SAD of different positons, 

select the best match using the winner takes 

all (WTA) algorithm. The block with the low-

est matching cost SAD is searched for and its 

position is chosen as the pixel value for the 

disparity map. 

Traversing the image within disparity search range, 

we obtain a rough disparity image. Then, three as-

sumptions are combined to renovate the disparity 

image: 

– Disparity component assumption: assume the 

image consists of a number of connected sets 

of pixels with same disparity, which coincides 

with our condition, as disparities of an obsta-

cle won’t differ vastly [28,29]. 

– Disparity uniqueness assumption: assume ra-

tio of lowest SAD to second lowest SAD is 

smaller than a threshold, which rejects some 

mismatching pixels. 

– Texture adequacy assumption: assume sum of 

pixel gradients in the window exceeds a 

threshold, which only retains disparities of 

edge pixels of an obstacle. 

The disparity matching algorithm is computation-

ally efficient for edge disparity estimation. Thus, 

short-range objects’ edge disparity is acquired with 

proper matching search range along the aligned scan-

line. In our case, since two IR cameras are set apart 

with a baseline T  of 70mm and focal length f  

about 580 pixels, the search range of disparity   is 

set as 60 pixels to 250 pixels. Accordingly, this 

method matches the edges of objects within 165mm-

650mm as Eq. (2) computed. 

f T
d





                                                             (2) 

2.4. Depth calculation and fusion 

The edge disparity image corresponds to IR stereo 

depth image. For each non-zero disparity, depth of 

the pixel is calculated through Eq. (2). Thereupon, a 

IR stereo depth image is obtained, which represents 

depth of short-range objects. Then, we perform fu-

sion of short-range depth information with original 

information: 

– Fusion of short-range depth image and origi-

nal depth image. 

– Fusion of short-range depth image with IR 

image and RGB image. 



The fusion of depth is calculated by replacing val-

ue of invalid depth pixels with corresponding one 

from the IR stereo depth, as shown in Eq. (3). As for 

each pixel, the depth equals original depth, if 

the Bool of the pixel equals to 1, which means the 

original depth of the pixel is valid. Otherwise, the 

depth equals IR stereo depth. The original RGB-D 

depth and short-range IR stereo depth are fused into a 

synthetic depth image, as shown in Figure 5. 

(1 )fusion original stereod Bool d Bool d                 (3) 

 

 

(a) The RGB image acquired with Intel RealSense R200 

 

(b) The original depth image acquired with Intel RealSense 

R200 

 

(c) The synthetic depth image 

Fig. 5. The fusion of the original depth image and short-range IR 

stereo depth image. The edge depth of the short-range objects is 
added in the original RGB-D depth image. 

Next, we fuse IR stereo depth image with IR im-

age and RGB image. Since the IR stereo image cor-

responds to one IR image, an image registration is 

performed with the RGB image and the IR image. 

Assume 
IRP  is the 3D coordinate of a point in the IR 

camera coordinate system, 
IRp  is the image coordi-

nate, 
IRH  is the intrinsic matrix of the IR camera. 

According to the pinhole imaging model, these three 

matrixes satisfy relations shown in Eq. (4). 

1

IR IR IR

IR IR IR

p H P

P H p




                                                       (4) 

Assume PRGB
 is the 3D coordinate of the point in 

the RGB coordinate system, 
IRP  is the image coordi-

nate in RGB image, 
RGBH  is the intrinsic matrix of 

RGB camera. The relation between the two 3D coor-

dinates of two cameras is shown in Eq. (5). 

RGB IRP = RP +T                                                    (5) 

In Eq. (4), R is the rotation matrix and T is the 

translation matrix. As shown in Eq. (6), it can acquire 

the corresponding coordinate in the RGB image by 

using the intrinsic matrix 
RGBH  for 

RGBP  to perform a 

projection. 

RGB RGB RGBp H P                                                  (6) 

In this work, we use the average edge depth of a 

short-range object and relevant calibration parame-

ters to project to the RGB image, and replace the 

minimum bounding rectangle of the object in the IR 

image with the RGB information. As shown in Fig-

ure 6, we mark the average depth of the object at the 

center of the rectangle. 

 

 

Fig. 6. The fusion of the IR stereo and the RGB image. The aver-

age depth of the object is marked in scale of millimeter. 



2.5. Obstacle detection 

A seeded region growing algorithm is presented to 

perform obstacle detection with fused depth infor-

mation. 

The de-noising and hole-filling is essential before 

conducting obstacle detection, since a lot of noise 

and miss-match pixels exist in the depth image. In 

this work, we use an adaptive cross-trilateral depth 

map filtering algorithm [30,31,32] to refine the depth 

image. 

Seeds in the obstacles detection are selected be-

tween the edges of the depth image. By analyzing the 

depth divergence, sets of pixels of same growing 

result are classified as obstacles [33]. Then, we select 

several evenly distributed rows in the depth image. In 

each row, seeds are selected at the middle point of 

two edge pixels and starts to extend itself until one of 

following four conditions is satisfied: 

– The growing pixel meets the edge pixel. 

– The growing pixel belongs to any other re-

gions. 

– The growing pixel is visited during the grow-

ing course of the current seed. 

– The depth difference of two adjacent pixels 

exceeds the growing threshold. 

After the growing process, several regions where 

the seeds grew appear on the image. Not all of the 

regions belong to the obstacles and an entire obstacle 

may be grown to several parts. Thus, several 

measures are conducted to exclude or combine re-

gions as mentioned below: 

– Regions which have few pixels are excluded.  

– Adjacent regions which have similar height 

are combined. 

– Because the boundaries of the obstacles al-

ways vary sharply, regions whose boundaries 

are mostly continuous are excluded. 

The minimum bounding rectangle of the obstacle 

is replaced with the RGB information, similar to the 

process in the fusion of short-range depth and RGB 

image. As shown in Figure 7, the projection is per-

formed with the average depth of the object and the 

depth is marked at the center of the rectangle. 

 

 

Fig. 7. The obstacle detection with the seeded region growing 

algorithm. In the IR image, obstacles in the minimum bounding 

rectangle are replaced with the RGB information, which are pro-
jected with average depth. The depth value in a scale of millimeter 

is marked in the image 

 

3. Experiments 

The presented approach has been evaluated with 

several experiments including ranging accuracy, ob-

stacle detection as well as a contrast test. 

Accuracy test is performed to analyze ranging ac-

curacy of three ranges and study whether it meets the 

requirement for accuracy of navigational assistance. 

Obstacle detection is performed to study the effec-

tiveness of detecting various obstacles and the run-

ning time of the algorithm. The contrast test is to 

check whether it helps navigational assistance with 

minimum range decreased by comparing perfor-

mance with or without short-range information. 

3.1. Accuracy test 

From 2.1, we know depth information is divided 

into three ranges, in which the short-range is realized 

in this paper. Owing to this, the accuracy test is per-

formed separately in terms of three ranges and the 

results are shown in Figure 8. The relative accuracy 

is calculated in comparison with the result of the la-

ser ranging, which is set as truth-value. In terms of  

the range of IR stereo ranging from 165mm to 

650mm, the relative accuracy is less than 2.5%, and 
2R of the linear fashion equals to 0.9996. As for the 

range of 650mm to 2700mm, where the depth is 

measured through changes of speckles, the accuracy 

is less than 1.2%, and 2R  of the linear fashion equals 



to 0.9999. In the range of 2700mm to 5300mm, 

where depth is measured through stereo matching, 

the accuracy is less than 4.5%, and 2R of the linear 

fashion equals to 0.9968. 

Generally, the accuracy of structure light ranging 

is better than that of the stereo matching ranging as 

the former one equivalently measures known textures 

while the latter one measures real-world textures 

which tend to create more errors. The result rein-

forced the speculation and that’s why the relative 

accuracy of the second range is the lowest. Besides, 

ranging standard deviation increases as distance in-

creases, and the standard deviation of the first range 

is lowest. From Eq. (2), we deduce Eq. (7) (8) (9). As 

the distance of the object from the sensor, i.e. d , 

increases, disparity   decreases which leads to the 

increase of 



. Finally, 

d

d


 increases. Similarly, 

the test result verified the derivation that ranging 

standard deviation of the range from 165mm to 

650mm is the lowest of three ranges. 

2

d f T 
 

 
                                                      (7) 

/

/

d d f T

d

 
 

  
                                                 (8) 

d

d

 
 


                                                          (9) 

Overall, the relative ranging accuracy of the range 

which ranges from 650mm to 2700mm is the lowest, 

and the standard deviation of the range which ranges 

from 165mm to 650mm is the lowest. To briefly 

summarize, the ranging error of the range within 3m 

is lower than 3.5cm. Apparently, the accuracy satis-

fies the requirement of navigational assistance for the 

visually impaired. 

 

 

(a) Relative accuracy of IR stereo ranging from 165mm to 650mm 

 

(b) Relative accuracy of Intel RealSense R200 from 650mm to 2700mm 



 

(c) Relative accuracy of Intel RealSense R200 from 2700mm to 5300mm 

 

(d) STDEV (Standard deviation) of ranging in three ranges 

Fig. 8. Accuracy test result on three ranges of Intel RealSense R200 

 

3.2. Obstacle detection 

With short-range information complemented, the 

seeded region growing algorithm is evaluated for 

various obstacles of different materials, textures and 

distances. 

Short-range obstacles are detected with IR stereo 

depth. Shown in Figure 9, we demonstrate the capa-

bility of detecting different obstacles including hu-

man face, finger, postcard, display screen, matte ob-

jects, texture-less objects, curved surface objects. 

Besides, artificial light source such as fluorescent 

lamp in the distance and sunlight outside of window 

are not detected as short-range object any more. 

However, transparent objects such as glasses would 

be undetected because laser speckles would transmit 

through glasses instead of forming an over-exposed 

region in IR image. 

 

       
 



       
 

       

Fig. 9. Short-range obstacle detection: the background is the IR image, and the RGB information of the obstacle is projected using average 

depth of the object, and the depth in a scale of millimeter is marked in the image. Obstacles of different materials, textures and distances can be 
correctly detected, and shiny objects in the distance would not be wrongly detected. 

 

       

As far as the maximum range is concerned, we 

found out maximum range of IR stereo would change 

through adjusting gain of IR camera. As shown in 

Figure 10, the maximum range of the IR stereo to IR 

camera gain shows a logarithmic increase 

( 2R 0.9991 ). Because the minimum range of the 

original RGB-D depth is around 650mm, IR camera 

gain is set to 10 in our case. Thus, we can obtain 

depth ranging from 165mm to 650mm through IR 

stereo, and combine it with the original RGB-D depth, 

so as to obtain depth ranging from 165mm to more 

than 5000mm without any blind range in the middle. 

 

 

Fig. 10. Relationship between maximum range stereo and IR cam-

era gain. 

 

Meanwhile, if the distance between an obstacle 

and the sensor is more than 650mm, obstacles are 

detected with original depth information. Shown in 

Figure 11, obstacles of different shapes and locations 

are correctly detected including human body, chair, 

window, cabinet, stair and umbrella. However, this 

algorithm still fails on transparent objects. 

The running time of the individual parts of the al-

gorithm for a single frame on Microsoft Surface Pro 

3 with a 1.90GHz CPU is shown in Table 2. The total 

time of a single frame is 161ms, which makes obsta-

cle be detected at about 6FPS feasible. Moreover, the 

development environment is Microsoft Visual Studio 

2012 and OpenCV library is employed. 

Together, obstacle detection results show the ca-

pacity of detecting obstacles ranging from 165mm to 

more than 5000mm at 6FPS. We provide empirical 

evidences concerning the drastic improvement of the 

detection range of the RGB-D sensor and the quali-

fied robustness and speed of obstacle detection. 

 
Table 2 

The running time 

Process Time 

Capturing images 3ms 

Extracting over-dense speckle regions and elim-

inating misjudgment 

17ms 

Block matching 69ms 

Seeded region growing and information fusing 72ms 



       
 

       
 

       

Fig. 11. Obstacle detection from more than minimum range of the sensor: the background is the IR image, and the RGB information of the 

obstacle is projected using average depth of the object, and the depth in a scale of millimeter is marked in the image. Obstacles of different 

shapes and locations can be correctly detected. 

 

3.3. Navigational assistance 

An experiment is carried out to check whether 

short-range depth information could influence the 

performance of navigational assistance. In this work, 

a contrary test is designed to compare its perfor-

mance under two conditions: with or without short-

range information for obstacle detection. 

As shown in Figure 12, the experiment device in a 

portable format includes: Intel RealSense R200, a 3D 

printed frame to hold the sensor, a vibrating belt and 

the processor Microsoft Surface Pro 3. It can be seen 

this device is light and easy to wear. The vibrating 

belt is adopted as feedback device to indicate obsta-

cle distance and direction. The belt is consisted of 7 

haptic actuators and each actuator corresponds to 

obstacles in each direction. We transfer information 

of closest 3 obstacles to the belt. If the number of 

obstacles is less than 3, information of all obstacles 

are transferred to the belt. The vibrating intensity 

contains 4 levels: 0-3. The closer the obstacle, the 

higher the vibrating intensity grows. 

 



  

Fig. 12. Experiment device of navigational assistance: the RGB-D 

sensor, a processor and a vibrating belt. 

 

In this experiment, participants were asked to trav-

erse through obstacles avoiding collisions with ob-

stacles or walls. As shown in Figure 13, nine differ-

ent obstacle arrangement were generated by arrang-

ing the position of each obstacle differently. A set of 

identical traffic road cones were used as obstacles. 

Eight visually impaired volunteers including three 

suffering from total blindness participated in the test. 

Before experiment, they have never tried this device 

so we gave them a simple introduction of working 

pattern of the system and signals from the vibrating 

belt. Each one of them first completed the task of 

obstacle avoidance for all arrangements in a random 

order with short-range depth information comple-

mented. After that, they were asked to complete 

without short-range depth complemented, which 

means the obstacle detection algorithm runs with 

only original RGB-D depth image from the sensor. 

 

  

Fig. 13. Schematics of all nine obstacle arrangements and a photo 

of one arrangement  

 

All participants were able to complete the experi-

ment with the wearable experiment device and a 

blinder. Number of total collisions in each trial are 

shown in Figure 14. Collisions include collision with 

obstacles and walls. The timer starts when a partici-

pant is sent to the start region and stops when the 

participant arrives the stop region. When obstacle 

algorithm runs with short-range depth information 

and original depth information, they collide with ob-

stacles and walls 63 times altogether. When obstacle 

algorithm runs with only original depth from the sen-

sor, they collide 118 times altogether. The number of 

collisions with minimum range decreased is 46.6% 

less than that without minimum range decreased. 

Besides, the average time of each trial with short-

range depth information is 41s, while the average 

time is 76s without short-range depth information. 

This is a big improvement of navigational assistance 

performance since other experimental conditions are 

controlled to be the same. It is convinced that the 

presented approach which decreases the minimum 

range of detection could enhance the reliability and 

safety of navigational assistance. Besides, we found 

out that as trial times increase, the average total time 

of a participant to complete a single obstacle avoid-

ance traverse decreases, since the participants are 

more and more acquainted with the device. We can 

rule out the possibility that decrease of the number of 

collisions is due to variation of familiarity. Because 

the test was performed with minimum range de-

creased first, it would help improve rather than 

weaken the performance of navigational assistance 

without short-range information if they are more fa-

miliar with the device afterwards. 

 

 

Fig. 14. Number of total collisions in two conditions. The number 

of total collisions of eight participants is 63 with short-range depth 

while the number is 118 without short-range depth.  

 



4. Conclusions and future work 

RGB-D sensor is a great choice for navigational 

assistance to capture information from real-world 

scenes. However, they all have a minimum range of 

about 800mm, because within minimum range, laser 

speckles are hard to recognize due to over-exposure 

in IR image. As a result, the RGB-D sensors fail to 

generate depth within minimum range. In this paper, 

we present a novel method to make full use of over-

dense speckle regions in IR image for stereo match-

ing and generate short-range depth. A RGB-D sensor 

Intel RealSense R200 is used, with which the mini-

mum range is decreased by approximately 75%, 

namely from 650mm to 165mm. The approach is 

tested and gives out a ranging accuracy of 2.5%, a 

processing speed of 6FPS on Microsoft Surface Pro 3, 

which satisfies the requirement for accuracy and 

speed of navigational assistance for visually impaired 

individuals. With seeded region growing algorithm, 

we show the capability of correctly detecting obsta-

cles ranging from 165mm to more than 5000m, 

which enlarges original detecting range of the sensor 

drastically. The algorithm is robust in terms of differ-

ent obstacles and is computationally efficient for re-

al-time implementation. Together, a contrary naviga-

tional assistance test is performed, showing improved 

performance with short-range depth information 

complemented. It is demonstrated that the presented 

approach can effectively decrease the minimum 

range of a RGB-D sensor and enhance the reliability 

of navigational assistance. 

In the future, we aim to incessantly enhance our 

navigation assistance approach for the visually im-

paired. Specifically, we look forward to including 

more sophisticated refine schemes for short-range 

imaging and further investigating obstacle detection 

schemes such as improving the performance on 

transparent objects. 
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