CFVL: A Coarse-to-Fine Vehicle Localizer with Omnidirectional
Perception across Severe Appearance Variations

Yicheng Fang!, Kaiwei Wang?, Ruigi Cheng! and Kailun Yang3

Abstract— Visual localization in vehicle navigation remains
a crucial image retrieval task to determine the best matched
image. Developing an efficient algorithm to address the lo-
calization issues of vehicle is highly difficult, for severe ap-
pearance variations with vehicles moving around can bring
about significant challenges and big obstacles. In this paper,
we propose the CFVL framework which takes panoramas into
use in the localizer and the system processes from coarse to
fine, in order to attain more robust and stable descriptors.
NetVALD descriptors based on explicit panorama construction,
which are regarded robust to appearance changes, are extracted
in the coarse stage, while Geodesc keypoint descriptors, which
are believed to detect more detailed information, are utilized
in the fine stage, so as to perceive the accurate localization.
A comprehensive set of experiments is carried on several
datasets with different appearances across seasonal cycling,
illumination variations, diverse traversals, and so on, to verify
the effectiveness of the coarse stage and fine stage in our
system. Brute Force (BF) matching and Fundamental Matrix
mapping are utilized to match and locate correct locations after
coarse stage and after fine stage. The accuracy of the coarse
matching and fine matching are verified separately. Our system
is demonstrated to be with high location recall, generalization
capacity across different environments.

I. INTRODUCTION

Visual localization has always been an unsolved and
challenging problem in the field of vehicle navigation. Day-
night cycling, seasonal variations, highly dynamic objects,
viewpoint changing, and illumination variations can all be
regarded as severe appearance variations that limit the ro-
bustness of navigation systems [1] [2] [3] [4]. Panoramas
based visual localizition, as a state-of-art field of localization,
has also been tried sporadically. Panoramas can greatly
diminish the impact of changes in viewpoints. In addition,
for constant attention from all directions is required, and
omnidirectional perception is highly needed for autonomous
vehicles, panoramas are also necessary [5] [6] [7].

In the literature, a cluster of visual localization algorithms
based on panoramas has been presented [8] [9] [10] [11] [12],
but some of the features they design may not be adaptive
to large-scale driving scenarios that appear in vehicle navi-
gation. Besides, the lack of open-source panoramic datasets
with diverse scenes, and the low computation efficiency make
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Fig. 1. Overview of the proposed CFVL framework. In the prior preparation
phase, the panoramic annular images will be processed in explicit panoramas
or plane images in two forms. In the localization phase, NetVLAD descrip-
tors and Geodesc descriptors will be detected in the coarse stage and fine
stage respectively. After that, Brute Force (BF) matching and Fundamental
Matrix mapping will be conducted respectively.

it harder for researchers to leverage panoramic localization
for intelligent vehicles applications.

Convolutional Neural Networks (CNN) descriptors have
been extensively utilized in visual localization and achieved
competent performances [13] [14] [15] [16] [17]. Recently, a
state-of-art network called NetVLAD [18], which combines
a backbone network and a NetVLAD layer, is confirmed to
reach superior performances than common CNNs in visual
place recognition and location retrieval tasks. Common active
deep descriptors are usually extracted from models pre-
trained by local images with only forward view of a scene,
which are unreliable for omnidirectional perception of the
whole surroundings due to the discrepancies in panoramas
and conventional pin-hole images [5]. On the other hand,
only active deep features are not accurate enough to yield
the exact topl result, but they allow to generate a coarse
range for the right locations [2].

For these reasons, we propose CFVL, a Coarse-to-Fine Ve-
hicle Localizer, which performs omnidirectional perception
using panoramas explicitly, to tackle the challenges brought
by severe appearance variations in vehicle navigation. Our
approach can be divided into three parts, where the overview
of the proposed CFVL framework is shown in Figure 1. The
contributions of this paper are summarized as follows:

« This paper proposes a novel vehicle localization system:
CFVL, which utilizes the panoramic images to assist
localization under viewpoint changing during outdoor



driving, meanwhile obtains omnidirectional perception.

e CFVL combines NetVLAD  descriptors and
Geodesc [19] keypoint descriptors, taking advangate
of appearance invariance for NetVLAD descriptors
and capacity of obtaining detailed information for
Geodesc descriptors, which form a Coarse-to-Fine
vehicle localization method. It is demonstrated that
the coarse stage is able to search a rough range for
accurate localization, while the fine stage can provide
much finer results.

o We collect a real-world panoramic dataset with perfect
vehicle views Chengyuan dataset, to facilitate the
study of panoramic visual localizition, and to validate
our CFVL system. Chengyuan dataset can be obtained
at https://github.com/dachengzihhh/Chengyuan-dataset.

II. RELATED WORK

In this section, some related work including acquisition
of wide-angle images, diverse descriptors for image retrieval
and attempts on panoramic localization are reviewed.

A. Acquisition of wide-angle images

Sometimes large-angle views are needed to acquire om-
nidirectional information of the surroundings in the fields
of panoramic monitoring, pipeline detection, machine vision
and autonomous vehicle. Generally, two ways are widely
employed to obtain wide-angle images, one of them is by
image stitching [20], with superiorities of high image reso-
lution and equipment simplification. Another is single-sensor
gaze imaging technology, which reaches a perfect real-time
performance, where fish-eye lens [21] and panoramic annular
lens (PAL) [22] are two applications of it, as no latency will
be incurred in synchronization and data fusion.

The panoramas gained by image stitching has limitations
of poor real-time performance and stitching errors. Fish-eye
lens can get over these difficulties, however, the images taken
by them have a strong negative distortion in the edge region,
and the large areas of skyward contents in the images are
regarded useless for visual localization. Luckily, PAL, whose
illumination of the phase surface is uniform, and the images
taken by whom don’t have serious negative distortion on the
edge, thus can perfectly satisfy our requirement in vehicle
localization tasks. PAL consists of a PAL block, a set of
Relay Lens (RL), and a camera for imaging. After light
enters, it is reflected three times by the PAL block to reduce
the incident angle, and then the image is captured on the
camera through the RL system with positive optical focus
which contributes again to the reduction of incident angle,
the basic structure and the imaging optical path of the system
of PAL are shown in Figure 2.

B. Diverse descriptors for image retrieval

In the field of visual localization, adaptive descriptors are
utilized when the circumstances change. Sometimes holistic
images can be presented by local features [23] [24] while
sometimes by global descriptors [25] [26]. GIST [26] [27]
is a kind of handcrafted global descriptors, which is extracted
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Fig. 2. Basic structure and the imaging optical path of PAL.

from holistic images, shows sensitivity to the viewpoint
changing. Similarly, SeqSLAM [25], as a holistic algorithm
based on sequence matching, is also found not robust to
viewpoint changes, although it performs remarkably well
under appearance changes. However, SIFT [24], SURF [28]
local descriptors have demonstrated viewpoint invariance,
but degrades the robustness on the appearance changing
conditions. Our previous work has proved that local descrip-
tors combined with holistic descriptors method can cope
with the visual localization problems against environment
changing [2].

Extensive Convolutional Neural Networks descriptors are
prevailing in perceiving the accurate localization in recent
days [13] [14] [15] [16]. One application of CNN descriptors
is to utilize a pre-trained network model to obtain a knowl-
edge from classification tasks. S. Lin et al. [3] evaluated
different layer features derived from five prevailing ConvNets
(AlexNet, VGGNet, GooglLeNet, SqueezeNet, MobileNet)
on their robustness against various environmental changes.
It is demonstrated that GooglLeNet has overwhelming ad-
vantages over other ConvNets. However, as the information
extracted from pre-trained network is limited, more active
and adaptive CNN descriptors are required. Then, the more
robust NetVLAD network was proposed, by combining
a backbone network and a NetVLAD layer, where the
NetVALD descriptors can effectively improve the ability
to express images of the same category and enhance the
capability of image retrieval [18].

C. Attempts on panoramic localization

I. Ahmet et al. [29] proposed a panorama to panorama
matching method based on NetVLAD descriptors for loca-
tion recognition. By testing through implicit construction
of a panorama in the descriptor space and explicit con-
struction of a panorama in the image space respectively
on the “street view” imagery, it comes out that a single
NetVLAD descriptor is preferable than aggregating indi-
vidual views into a vector in most of the situations for
visual localization tasks. R. Cheng et.al. [1] also presented
a Panoramic Annular Localizer based on panoramic annular
images and active deep descriptors. It is demonstrated that
active deep descriptors, especially NetVLAD descriptors, ob-
tain a superior performance than some passive methods. The



proposed CFVL utilizes explicit panoramas to train active
NetVLAD descriptors, instead of common local forward-
facing images, and attaches a fine matching procedure to
enhance matching ability. We will compare their matching
results with our CFVL on the Yuquan dataset [1] in the
following experiments.

III. METHODOLOGY

In this section, methodology of our CFVL framework will
be interpreted in three dominating parts: prior preparation
of panoramic annular images, descriptors extraction on both
coarse and fine stages, as well as localization.

A. Prior preparation: panoramic annular image processing
in two forms

Because the panoramic annular images are not consistent
with human visual sense, processing them in which form is of
great significance. Figure 3(a) shows a PAL and Figure 3(b)
shows a panoramic annular image imaged by PAL. To
eliminate distortion in the panoramas, we need to project
the view of PAL into a unit spherical surface first, to ensure
that each pixel is of the same distance from the original
point. Then the projection on the spherical surface will be
processed in two forms, as shown in Figure 3(c). The upper
method projects the unit spherical surface onto a cylinder,
and then unfolds the cylinder. In this way, a complete explicit
panorama is produced. For the NetVLAD network is trained
on the explicit panoramas, the test images would better
be explicit panoramas unfolded in the first form, so that
feature consistency can be guaranteed. Another processing
form is projecting the spherical surface onto a cube, as
shown in Figure 3(c) (the bottom method), in which four
plane images will be obtained from one panoramic annular
image. In the Geodesc descriptor matching procedure, the
Fundamental matrix [30] of query images and database
images will be computed, where the planarity of the images
must be confirmed so that solid geometry principle can be
satisfied. The second processing way can perfectly suits this
strict principle.

B. Descriptors extraction on both coarse and fine stages

o Coarse stage: NetVLAD global descriptors
The NetVLAD network architecture includes a standard
CNN and a NetVLAD layer. By training such network
in a backward propagating way, the model will obtain
the learning ability, to recognize location information
from different appearances provided by images. Triple
loss is designed to impel the query images to find out
which are the most similar images from the dataset, to
distinguish positives and negatives. In this way, once
we feed a panorama into the NetVLAD network, a
robust holistic descriptor will be extracted to tackle the
challenges of appearance changing.

o Fine stage: Geodesc keypoint descriptors
Geodesc descriptors are state-of-art deep-learning based
keypoint descriptors, which offer a novel batch con-
structed method that simulates the pixel-wise match-
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Fig. 3.

(a) PAL; (b) A panoramic annular image imaged by PAL; (c) Two
panoramic annular image processing forms, the upper method projects the
unit spherical surface onto a cylinder, while the bottom method projects the
unit spherical surface onto a cube.

ing and effectively samples useful data for the learn-
ing process. The model is pre-trained on the Hpatch
dataset [31], so it is convenient to deploy with any other
images in a straightforward way. Geodesc descriptors
are more adaptive to image content, compared to SIFT
descriptors. Figure 4 shows an example of matching re-
sult comparison between SIFT descriptors and Geodesc
descriptors on two similar ordinary images with slightly
different viewpoint, where more matching pairs and
fewer mismatches are detected when Geodesc descrip-
tors are utilized. In this sense, it is worth considering to
implement Geodesc descriptors to ensure that we have
sufficient points for the final localization.

C. Localization

Given a query panorama, Brute Force (BF) [32] matching
helps NetVLAD descriptors find out a rough accurate lo-
calization result, by computing the Euclidean distance [33]
between query image and database image as follows:

d(z,y) =V/(w1 —y1)? + (2 = y2)? + - + (2 — yn)?
ey
where
x=(T1,2T2,...,Zn) (2)
represents the feature extracted from query image;
y:<y17y27"'7y’n) (3)
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Fig. 4. Comparison of matching result between (a) SIFT descriptors and
(b) Geodesc descriptors.

represents the feature extracted from database image; and
d(zx,y) represents the Euclidean distance between the query
image and the database image.

Apart from the rough localization proposed above,
Geodesc descriptors help to determine a finer result. It is
able to find out a mapping relationship based on Fundamental
Matrix, between keypoints from query images and database
images, on the condition that the images are all regarded as
planes. Fundamental Matrix can be represented as follows:

aFTg =0 )

where ¢1, g2 represent pixel coordinates of two images;
F represents the Fundamental Matrix. However, panoramas
can not be regarded as planes any more, because they are
processed from panoramic annular images as cylinders other
than planes, which can be a huge problem for panoramic
matching, thus panoramic annular image projection onto a
cube will also be taken into consideration in our experiments.

IV. EXPERIMENTS
A. Panoramic stitching of Pittsburgh dataset

It is found that Pittsburgh dataset [34] can perceive more
scenarios due to its image diversity. Each image from the
Pittsburgh dataset is associated with a GPS location and a
total of 24 images are associated with the same GPS location.
The 24 images, which perceive 360° omnidirectional infor-
mation of a location, are collected from different perspectives
and there are overlapped areas between each two adjacent
images.

Out of expectation to construct explicit panoramas in order
to acquire training data and validation data, we adopt the
existing stitching method [20]. In addition, because we need
only scenes from the lower perspective that is suitable for
intelligent vehicle applications, only the bottom 12 images
are stitched. This also helps to save memory and improve
computation efficiency. Figure 5(a) shows random bottom
12 images in one location from Pittsburgh dataset, and

Figure 5(b) shows the stitched result. The existence of faint
black blur on the edge is reasonable after stitching. Not
all the images are stitched perfectly and successfully, for
the features between adjacent images are too similar or too
few. Figure 5(c) shows a mis-stitched result. We transform
images from Pitt250k train subset and Pitt250k val subset
to the stitched panoramas according to the image sequence
numbers, and the mis-stitched images are discarded. Finally
3632 database and 296 query panoramas are included in the
Pitt250k train subset, while 3207 database and 294 query
panoramas are contained in the Pitt250 val subset. We train
NetVLAD network on Pitts250k train subset.
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Fig. 5. (a) Random bottom 12 images in one location from Pittsburgh
dataset; (b) The stitched panorama of (a); (c) A mis-stitched result.

B. Validation of coarse stage: whether rough range can be
selected?

To validate whether the coarse stage can select a rough
range for a accurate location, query explicit panoramas are
unfolded in the first form (as shown in Figure 3(c), the upper
approach), and then are fed into AlextNet [35], VGG16 [36]
and ResNetl8 [37] with NetVLAD network respectively.
This way, we obtain three kinds of NetVLAD descriptors,
which will be utilized to determine top20, or in other words,
a rough range of accurate localization.

TABLE I
LOCALIZATION RESULTS OF COARSE STAGE ON PITT250 VAL SUBSET

Model recall@] || recall@5 || recall@10 || recall@20
C:AlexNet+NetVLAD 0.7585 0.9354 0.9226 0.9762
C:VGG16+NetVLAD 0.9286 0.9864 0.9898 0.9898

C:ResNetl18+NetVLAD || 0.9456 0.9864 0.9932 0.9932

aC means coarse stage.

Firstly we verify the feasibility of the NetVLAD models
trained by explicit panoramas, by experimenting on stitched
Pitt250k val subset. Recall@TopN means the precision when
only if one of the N results is in the range of ground
truth, it is regarded as a accurate localization. Matching
results are shown in Table 1, we can easily see that the
models perform a remarkable performance on not only rough
range, but even on fine range. The best performed model
ResNet18 with NetVLAD on rough range reaches a high
recall@20 of 0.9932. What’s more, the finest top1 result gets
to 0.9456, even the top 12 images and mis-stitched images



are discarded, which shows a great success of NetVLAD
models trained by explicit panoramas. However, here the
train subset and val subset are from the same dataset, the
versatility and generalization capacity of the models should
also be taken into consideration by verifying the performance
in unseen domains.

TABLE II
LOCALIZATION RESULTS OF COARSE STAGE ON MOLP
DATASET-BACKWARD AS QUERY, FORWARD AS DATABASE

Query: Backward, Database: Forward

Model recall@] || recall@5 || recall@10 || recall@20
C:AlexNet+NetVLAD 0.2525 0.5170 0.6453 0.7976
C:ResNet18+NetVLAD || 0.3006 0.6253 0.7635 0.8657
C:VGG16+NetVLAD 0.4008 0.6613 0.7495 0.8417

2C means coarse stage.

Secondly the NetVLAD models are tested on the public
explicit panoramic MOLP dataset [9] across reverse travers-
ing directions, to further validate the generalization capability
for large-scale images and discriminability for appearance
changes. MOLP dataset is captured by four binocular cam-
eras in different seasons, in driving perspectives. We evaluate
our coarse stage on summer night subset which includes
forward and backward routes from city, and the tolerance
is set to 5 images before and after the ground truth. The
matching results are shown in Table 2. The best recall@20
reaches 0.8657, it is believed that the rough range can be
relatively accurate to include correct locations. It proves
that our NetVLAD models trained by explicit panoramas
can learn something irrelevant with day-night appearances,
although the train data have no night information, which is
helpful to identify the location features from environments.

TABLE III
LOCALIZATION RESULTS OF COARSE STAGE ON YUQUAN
DATASET-AFTERNOON2 AS QUERY, AFTERNOON1 AS DATABASE

Query: Afternoon2, Database: Afternoonl

Model recall@] || recall@5 || recall@10 || recall@20
C:ResNet18+NetVLAD || 0.6388 0.7975 0.8343 0.8697
C:AlexNet+NetVLAD 0.7323 0.8470 0.8966 0.9334
C:VGG16+NetVLAD 0.8173 0.8924 0.9292 0.9589

Query: Dusk, Database: Afternoonl

recall@] || recall@5 || recall@10 || recall@20
C:ResNet18+NetVLAD || 0.3556 0.6038 0.7068 0.7881
C:AlexNet+NetVLAD 0.3788 0.5181 0.6313 0.7605
C:VGG16+NetVLAD 0.5893 0.8200 0.9057 0.9057

2C means coarse stage.

The third validation is conducted on Yuquan dataset from
real-world vehicle scenarios overcoming different illumina-
tion and traverses. Yuquan dataset is collected with PAL on
a three-kilometer route in Zhejiang University. The subset
Afternoonl and subset Afternoon2 are captured both on
sunny afternoon but from different traverses and another
subset Dusk is captured at dusk. Setting Afternoonl subset as
database and Afternoon2 subset as query allows to validate

performances of coarse stage against different traverses while
setting Afternoonl subset as database and Dusk subset as
query facilitates the comparison of our system under different
illumination conditions. The matching results are shown in
Table 3. In our experiments, ground truth is annotated based
on GPS information and the tolerance distance between two
images is set to 50 meters. The NetVLAD models also
succeed in harsh real-world scenarios, the best performed
VGG16 with NetVLAD achieves a recall@20 of 0.9589
when Afternoon2 is set as query, and achieves a recall@20
0f 0.9057 when Dusk is set as query.

We can also easily compare the topl results on Yuquan
datset with the Panoramic Annular Localizer proposed by
R. Cheng et al. [1] under the same conditions. Our topl
best matching results, 0.8173 when the query is Afternoon2
and 0.5893 when the query is Dusk, outstripping their ap-
proach which feeds panoramas directly into NetVLAD with
ResNet18 trained by local images method, whose positive
rate is 0.4524 and 0.3289 respectively. In this sense, our
model superiority trained by explicit panoramas is proved.
However, the pity is that we can’t easily get access to the
calibration results of the datasets above, so the processing the
panoramas into planes is unattainable, which can’t satisfy the
matching conditions of the fine stage, but only the coarse
stage can already reach an excellent performance under
challenges.

C. Validation on Chengyuan dataset: from coarse to fine

We collect Chengyuan dataset on Chengyuan campus in
Gongshu District in Hangzhou, China to facilitate the study
of vehicle localizer, where the fully electric instrumented
vehicle shown in Figure 6(a) is utilized. The setting of the
acquisition program enables the real-time output of the two
forms of unfolded images shown as Figure 3(c), and the
requirements of coarse stage and fine stage can be met
simultaneously. The image acquisition equipment and route
are shown in Figure 6. This dataset covers the variations of
summer and winter, as well as sunny afternoon and cloudy
morning. Among them, subsetl with scenarios of winter
sunny afternoon is set as database, subset2 with summer
views and subset3 with winter cloudy morning scenarios are
set as query respectively.

In coarse stage, NetVLAD descriptors will be obtained
by the above method, which will be utilized to determine
a rough range. Only the topl0 database images selected by
the coarse stage need to conduct the following fine stage.
In the fine stage, four plane images will be unfolded by the
second processing method of Figure 3(c) from one panoramic
annular image. The corresponding part of the four plane
images between database and query images will be extracted
Geodesc descriptors to compute Fundamental Matrix as
mapping relationship, respectively. Inliners and outliners will
be distinguished by Fundamental Matrix, and the total inliner
number of the four parts will help to determine the final topl
result, or in other words, finer result. Figure 7 draws line
charts of the matching results. The coarse matching results
are drawn as dashed line, while the results of combination of



()

Fig. 6. (a) Image acquisition equipment; (b) Traveling route (the route is
denoted in yellow, and the red point refers to start point, the green point
refers to end point.)

coarse matching and fine matching are given in solid lines,
results of 1 or 3 images before and after the ground truth
setting as accurate localizations are both evaluated. As shown
in Figure 7, the challenges brought by season changes seem
to be more serious than those from weather changes, for the
recall in Figure 7(b) is not as accurate as Figure 7(a). We can
also see that after combination of coarse matching and fine
matching, the finer results improve dramatically than only
through the coarse matching. In this sense, our CFVL obtains
a great success verified by both numerical and qualitative
results. Figure 8 displays some correct visual localization
results on Chengyuan dataset.

V. CONCLUSIONS

In this paper, we propose a conceptually simple coarse-to-
fine vehicle localizer: CFVL, which can perceive omnidirec-
tional information of surroundings during vehicle traveling,
against severe appearance variations, such as illumination
changing, day-night cycling, traverse variations and so on.
The system processes from coarse stage to fine stage, coarse
stage strengthens the ability of recognizing different appear-
ances, while the fine stage improves the ability to learn detail
information from images. CFVL reaches excellent perfor-
mances on both coarse stage and fine stage. After conducting
a series experiments, it is demonstrated that the coarse stage
can select a rough range of accurate locations while the
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Fig. 7. Line chart of matching results on Chengyuan dataset. (a) Subset2

as query and subset] as database; (b) Subset3 as query and subsetl as query.
(C means coarse stage, C+F means combination of coarse stage and fine
stage.)

fine stage helps provide finer results. Compared to results
from others, our system reaches superior accuracy, even only
through the coarse stage, by training NetVLAD network with
explicit panoramas other than training with locally viewed
small images. Fine matching plays an important role in
producing finer results.
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