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Abstract— Active research on computer vision accelerates
the progress in autonomous driving. Following this trend, we
aim to leverage the recently emerged methods for Intelligent
Vehicles (IV), and transfer them to develop navigation assistive
technologies for the Visually Impaired (VI). This topic grows
notoriously challenging as it requires to detect a variety of
scenes towards higher level of assistance. Computer vision
based techniques with monocular detectors or depth sensors
sprung up within years of research. These separate approaches
achieved remarkable results with relatively low processing time,
and improved the mobility of visually impaired people to a
large extent. However, running all detectors jointly increases the
latency and burdens the computational resources. In this paper,
we put forward to seize pixel-wise semantic segmentation to
cover the perception needs of navigational assistance in a unified
way. This is critical not only for the terrain awareness regarding
traversable areas, sidewalks, stairs and water hazards, but also
for the avoidance of short-range obstacles, fast-approaching
pedestrians and vehicles. At the heart of our proposal is a
combination of efficient residual factorized network (ERFNet),
pyramid scene parsing network (PSPNet) and 3D point cloud
based segmentation. This approach proves to be with qualified
accuracy and speed for real-world applications by a compre-
hensive set of experiments on a wearable navigation system.

I. INTRODUCTION

Navigational assistance aims to enable visually impaired
people to ambulate safely and independently. Challenges
stated in this field are frequently related to scene understand-
ing, which are also similar to the problems of autonomous
driving. In this regard, the impressive developments of com-
puter vision achieved in Intelligent Vehicles (IV) can be an
enormous benefit for the Visually Impaired (VI), supposing
crucial prerequisites to enhance vehicular safety as well
as pedestrian safety. To extend the coverage of assistance
from able-bodied road users to people with visual impair-
ments, many navigational assistive technologies have been
developed to accomplish specific goals including avoiding
obstacles [1], [2], [3], finding paths [4], [5], [6], [7], locating
sidewalks [8], ascending [9] or descending stairs [10], and
negotiating water hazards [11].

It is true that each one of these navigational tasks has been
tackled well through its respective solutions. However, as the
demand of the VI increases [12], this topic grows challenging
which requires juggling multiple tasks simultaneously and
coordinating all of the perception needs efficiently. Accord-
ingly, the research community has been spurred to integrate
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Fig. 1. Two approaches of perception in navigational assistance for the
visually impaired. A different example image was used for water hazards
detection, but these images are all captured in real-world scenarios and
segmented with the proposed approach.

different detectors beyond traversability awareness, which is
considered as the backbone for any navigational assistive
tool [13]. As an illustration, the personal guidance system
created in [9] performed two main tasks. It approximately
runs the whole floor segmentation at 0.3FPS with additional
stair detection iteration time ranging from 50 to 150ms. Even
with the high precision in floor detecting and staircase mod-
eling, this approach awaits further optimization to provide
assistance at normal walking speed. Multi-threading is an
effective way to reduce latency but it increasingly burdens
the computational resources. An example is the pair of smart
glasses from KR-VISION [14], which detects obstacles,
stairs and sidesteps across different processing threads by
continuously receiving images from the sensors and multi-
tasking at different frame rates. In a user study of the pRGB-
D framework [11], although traversable directions and water
puddles were feedback concurrently, demand was revealed
for discerning more information of the terrain.

In the literature, a number of systems rely on sensor
fusion to understand more of the surrounding scenes [15].
In another respect, the concept investigated in [16] used a
highly integrated radar to warn against collisions with pedes-
trians and cars, taking into consideration that fast moving
objects are response-time critical. However, to the navigation
assistance, of even greater concern is the depth data from



Fig. 2. Overview of the wearable navigation system.

almost all commercial 3D sensors, which suffer from limited
depth range and could not maintain the robustness in various
environments [13]. Inevitably, approaches with stereo camera
or RGB-D sensor generally perform range expansion [2],
[17], depth enhancement [5] or depend on both visual and
depth information to complement each other [6]. Not to
mention the time consumption in these steps, underlying
assumptions were frequently made such as the ground plane
is the biggest area [1], the area directly in front of the user is
accessible [4] and variant versions of Manhattan World [6],
[9] or Stixel World assumption [3], [7]. These factors all
limit the flexibility in navigational assistive applications.

However, unlike traditional approaches mentioned above,
convolution neural networks, learn and discriminate between
different features directly from the input data using a deeper
abstraction of representation layers. Namely, recent advances
in deep learning have achieved break-through results in most
vision-based tasks including semantic segmentation, which
is to partition an image into several coherent semantically
meaningful parts. As depicted in Fig. 1, since traditional
approaches detect different targets independently [18], the
assistance for the VI are treated separately. Naturally, it is
beneficial to provide terrain awareness in a unified way,
because it allows to solve many tasks at once and exploit their
inter-relations and contexts. Semantic segmentation targets at
solving exactly this problem. It classifies a wide variety of
scene classes directly leading to pixel-wise understanding,
which supposes a very rich source of processed information
for higher-level navigational assistance.

Up until very recently, pixel-wise semantic segmentation
was not usable in terms of speed. However, a fraction of
networks has focused on the efficiency by proposing archi-
tectures that could reach near real-time segmentation [19],
[20]. These advances have made possible the utilization of
full scene segmentation in time-critical cases like blind assis-
tance. Nonetheless, to the best of our knowledge, no previous
work has developed real-time semantic segmentation to assist
visually impaired pedestrians. Based on this notion, instead
of simply identifying the most traversable direction [11], we
make an pioneering attempt to provide terrain awareness in
a unified way. In this paper, we extend our previous efficient
residual factorized network (ERFNet) [20] by combining a
pyramid scene parsing network (PSPNet) [21] to respond to
the surges in demand. Additionally, a set of fast depth post-
processing are implemented to enhance collision avoidance.
The main contributions of our work are threefold:

• A unification of terrain awareness regarding traversable
areas, obstacles, sidewalks, stairs, water hazards, pedes-
trians and vehicles.

• A real-time semantic segmentation network to learn
both global scene contexts and local textures without
imposing any assumptions.

• A real-world navigational assistance framework on a
wearable prototype for visually impaired individuals.

The remainder of this paper is structured as follows.
In Section II, the framework is elaborated in terms of
the wearable assistance system, the semantic segmentation
architecture and the implementation details. In Section III,
the approach is evaluated and discussed as for real-time and
real-world performance. In Section IV, relevant conclusions
are drawn and future works are expected.

II. APPROACH

A. Wearable navigation system

In this work, the main motivation is to design a prototype
which should be wearable without hurting the self-esteem
of visually impaired people. With this target in mind, we
follow the trend of using head-mounted glasses to acquire
environment information and interact with visually impaired
users. As worn by the user in Fig. 2, the system is composed
of a pair of smart glasses and a laptop in the backpack. The
pair of smart glasses named Intoer, commercially available
at [14], is comprised of a RGB-D sensor of RealSense
R200 [22] and a set of bone conducting earphones. We utilize
a laptop with Core i7-7700HQ processor and GTX 1050Ti
as the computing platform, which could be easily carried in
a backpack and is robust enough to operate in rough terrain.

This pair of glasses captures real-time RGB-D streams and
transfers them to the processor, while the RGB images are
fed to the network for semantic segmentation. As for the
depth images, which are acquired with the combination of
active speckle projecting and passive stereo matching, they
are preprocessed in the first place. To enforce the stereo
matching algorithm to deliver dense maps, we use a different
preset configuration with respect to the original depth image
of RealSense by controlling how aggressive the algorithm is
at discarding matched pixels. After that, the depth images
are de-noised by eliminating small segments which was
previously presented in [5]. The dense depth image with
noise reduction leads to robust segmentation of short-range
obstacles when using the semantic segmentation output as
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Fig. 3. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

the base for higher-level assistance. As far as the feedback
is concerned, the bone conducting earphones transfer the
detection results to the VI for both terrain awareness and
collision avoidance. This is important as visually impaired
people need to continue hearing environmental sounds and
the bone conducting interface allows them to hear a layer
of augmented acoustic reality that is superimposed on the
environmental sounds.

B. Semantic segmentation architecture

In order to leverage the success of segmenting a variety
of scenes and maintaining the efficiency, we design the
architecture according to the SegNet-based encoder-decoder
architecture like ENet [19] and our previous ERFNet [20].
In FCN-like architectures, feature maps from different layers
need to be fused to generate a fine-grain output. As indicated
in Fig. 3, our approach contrarily uses a more sequential
architecture based on an encoder producing down-sampled
feature maps and a subsequent decoder that up-samples
the feature maps to match input resolution. Table I gives
a detailed description of the integral architecture, where
residual layers were stacked in the encoder. Generally, the
residual layer adopted in state-of-art networks [19], [23] has
two instances: the bottleneck version and the non-bottleneck
design. In our previous work [20], “Non-bottleneck-1D”
(non-bt-1D) was proposed, which is a redesign of the residual
layer to leverage the efficiency of the bottleneck and the
learning capacity of non-bottleneck in a judicious trade-off
way by using 1D factorizations of the convolutional kernels.
Thereby, it enables an efficient use of minimized amount of
residual layers to extract feature maps and achieve semantic
segmentation in real time.

However, for the terrain awareness in intelligent assis-
tance, we attach a different decoder with respect to the
previous work. This key modification aims to collect more
contextual information while minimizing the sacrifice of
learning textures. Global context information is of cardinal
significance for terrain awareness in order to prevent gen-
erating confusing feedback. To detail this, if the network
mis-predicts a safe path in front of a lake, the VI would
be left vulnerable in the dynamic environments. This kind
of problem could be remedied by exploiting more context

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×480.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Scaling 640×480 3 320×240
1 Down-sampler block 16 160×120
2 Down-sampler block 64 80×60

3-7 5×Non-bt-1D 64 80×60
8 Down-sampler block 128 40×30
9 Non-bt-1D (dilated 2) 128 40×30
10 Non-bt-1D (dilated 4) 128 40×30
11 Non-bt-1D (dilated 8) 128 40×30
12 Non-bt-1D (dilated 16) 128 40×30
13 Non-bt-1D (dilated 2) 128 40×30
14 Non-bt-1D (dilated 4) 128 40×30
15 Non-bt-1D (dilated 8) 128 40×30
16 Non-bt-1D (dilated 2) 128 40×30

D
E

C
O

D
E

R

17a Original feature map 128 40×30
17b Pooling and convolution 32 40×30
17c Pooling and convolution 32 20×15
17d Pooling and convolution 32 10×8
17e Pooling and convolution 32 5×4
17 Up-sampler and concatenation 256 40×30
18 Convolution C 40×30
19 Up-sampler C 640×480

and learning more relationship between categories. With
this target in mind, we reconstruct the decoder architecture.
In this work, the decoder architecture follows the pyramid
pooling module as introduced by PSPNet [21]. This module
is leveraged to harvest different sub-region representations,
followed by up-sampling and concatenation layers to form
the final feature representation. As a result, it carries both
local and global context information from the diverse pooled
representations at different locations. Since it fuses features
under a group of different pyramid levels, the output of
different levels in this pyramid pooling module contains the
feature map from the encoder with varied sizes. To maintain
the weight of global feature, we append a convolution layer
after each pyramid level to reduce the dimension of context
representation to 1/N of the original one if the level size of
pyramid is N. As for the situation in Fig. 3c, the level size N
equals to 4 and we decrease the number of feature maps from
128 to 32. Subsequently, the low-dimension feature maps are
directly up-sampled to obtain the same size features as the
original feature map through bilinear interpolation. Fig. 3
contains a depiction of the feature maps generated by each
of the block in our architecture, from the RGB input to the



per-pixel class probabilities and final dense predictions.

C. Implementation details

Smart glasses. We start a stream of 640×480 RGB image,
a stream of 320×240 infrared stereo pair which produces
a stream of 320×240 depth image. The depth information
are projected to the field of view of color camera so as to
acquire a synchronized 640×480 depth stream. To achieve
high environmental adaptability, the automatic exposure and
gain control are enabled. Most of the depth control thresholds
are in the loosest setting while only the left-right consistency
constraint is adjusted to 30. For the short-range obstacle
avoidance, 5m is set as the threshold to segment directly at
pixel level if not classified as traversable area, stairs, water,
pedestrian or car.

Dataset. The challenging ADE20K dataset [24] is chosen
as it covers both indoor and outdoor scenarios. Also, this
dataset contains the classes of stairs and water areas, which
are very important scenes for the navigation assistance. To
enrich the training dataset, we add the images which have
the classes of sky, floor, road, grass, sidewalk, ground, water
and stairs from PASCAL-Context dataset [25] and COCO-
Stuff 10K dataset [26]. Hence, the training involves 37075
images, within which 20210 images are from ADE20K, 8733
images are from PASCAL-Context and the remaining 8132
images come from COCO-Stuff. In addition, we have 2000
images from ADE20K for validation. To provide awareness
regarding the scenes that visually impaired people care the
most during navigation, we only use the most frequent 22
classes of scenes or objects for training. Additionally, we
merge the water, sea, river, pool and lake into a class of water
hazards. In a similar way, the stairs, stairway, staircase are
merged into a class of stairs.

Data augmentations. To robustify the model against the
varied types of images from real world, we perform a group
of data augmentations. Firstly, random cropping and random
scaling are jointly used to resize the cropped regions into
320×240 input images. Secondly, a random rotation ranges
from −20o to 20o is implemented without cropping. This
intuition comes from that during navigation, the orientation
of the smart glasses would be constantly changing and the
images rotate. Thirdly, color jittering in terms of brightness,
saturation, contrast and hue are applied. Jittering factors
regarding brightness, saturation, and contrast here are chosen
uniformly from 0.8 to 1.2. Hue augmentation is performed
by adding a value between -0.2 and 0.2 to the hue value
channel of the HSV representation.

Training setup. Our model is trained using the Adam
optimization of stochastic gradient descent. Training is op-
erated with a batch size of 12, momentum of 0.9, weight
decay of 2×10−4, and we start with a original learning
rate of 5×10−5 and decrease the learning rate exponentially
across epochs. Following the scheme customized in [19], the
weights are determined as wclass = 1/ln(c+pclass), while c is
set to 1.001 to enforce the model to learn more information
of the less frequent of classes in the dataset. We first adapt
the encoder’s last layers to produce a single classification

output by adding extra pooling layers and a fully connected
layer and finally train the modified encoder on ImageNet.
After that, the extra layers are removed and the decoder
is appended to train the full network. With this setup, the
training reaches convergence when cross-entropy loss value
is used as the training criterion.

III. EXPERIMENTS AND DISCUSSION

Experiment setup. The experiments are performed with
the wearable navigation system in public spaces around
Westlake, the Zijingang Campus and the Yuquan Campus
at Zhejiang University in Hangzhou, the Polytechnic School
at University of Alcalá in Madrid as well as Venice Beach
and University of California in Los Angeles. This allows us
to evaluate not only on large-scale scene parsing dataset like
ADE20K [24], but also on real-world egocentric images, us-
ing Intersection-over-Union (IoU) and Pixel-wise Accuracy
(P-A) metrics.

Real-time performance. The total computation time of
a single frame is 16ms, while the image acquisition and
preprocessing from the smart glasses take 3ms, and the time
cost for the semantic segmentation is 13ms. In this sense, the
computation cost is saved to maintain a reasonably qualified
refresh-rate of 62.5FPS on a processor with a single GPU
GTX 1050Ti. This inference time demonstrates that it is able
to run our approach in real time, while allowing additional
time for auditory [1], [5], [11] or tactile feedback [2]. Our
ERF-PSPNet inherits the encoder design but implements a
quite efficient version of decoder. Thereby, the speed is even
slightly faster than our previous approach with ERFNet,
which runs at 55.6FPS on the same processor. Additionally,
on a embedded GPU Tegra TX1 (Jetson TX1) that enables
higher portability while consuming less than 10 Watts at full
load, our approach achieves approximately 22.0FPS.

Segmentation accuracy. The accuracy of our approach is
evaluated on both the challenging ADE20K dataset and our
real-world dataset. This terrain awareness dataset is publicly
available at [27], which contains 120 images with fine
annotations of important classes for navigation assistance
including ground, sidewalk, stairs, water hazards, person and
cars. After merging some classes towards better assistance,
we evaluate our approach by comparing the proposed archi-
tecture ERF-PSPNet, an existing deep convolutional neural
network ENet [19] and our previous work ERFNet [20] on
the ADE20K validation dataset. Here, the accuracy results
are reported using the commonly adopted Intersection-over-
Union (IoU) metric. From Table II(a), it could be told that
the accuracy of most classes obtained with the proposed
ERF-PSPNet exceeds the state-of-the-art architectures that
are also designed for real-time applications. Our architecture
builds upon previous work but has the ability to collect more
contextual information without major sacrifice of learning
from textures. As a result, for large-scale scene parsing
task that requires greater strength to gather diverse levels
of context, only the accuracy of sky and person are slightly
lower than ERFNet, which arguably could support more
reliable upper-level assistance.



TABLE II
ACCURACY ANALYSIS.

Architecture Sky Floor Road Grass Sidewalk Ground Person Car Water Stairs Mean IoU
ENet [19] 89.7% 72.4% 69.4% 56.5% 38.2% 75.0% 26.7% 64.8% 67.3% 23.7% 58.4%

ERFNet [20] 93.2% 77.3% 71.1% 64.5% 46.1% 76.3% 39.7% 70.1% 67.9% 24.1% 63.1%
ERF-PSPNet 93.0% 78.7% 73.8% 68.7% 51.6% 76.8% 39.4% 70.4% 77.0% 30.8% 66.0%

(a) On ADE20K dataset [24] using Intersection-over-Union (IoU).

Approach IoU Pixel-wise Accuracy (P-A)
In total With Depth Within 2m 2-3m 3-5m 5-10m

3D-RANSAC-F [1] 50.1% 67.2% 73.3% 53.9% 91.8% 85.2% 61.7%
ENet [19] 62.4% 85.2% 88.4% 79.9% 84.3% 89.7% 93.1%

ERF-PSPNet 82.1% 93.1% 95.9% 96.0% 96.3% 96.2% 96.0%

(b) On real-world dataset [27] in terms of traversability awareness.
Floor, road, grass, sidewalk and ground are merged into a class of traversable area.

“With Depth”: Only the pixels with valid depth information are evaluated.
Accuracy term Sky Traversable area Ground Sidewalk Stairs Water Person Car

IoU 88.0% 82.1% 72.7% 55.5% 67.0% 69.1% 66.8% 67.4%
Pixel-wise Accuracy 95.3% 93.1% 81.2% 93.1% 90.1% 86.3% 90.8% 93.1%

With Depth N/A 95.9% 84.9% 93.1% 90.8% 89.8% 90.4% 92.7%
Within 2m N/A 96.0% 76.9% 95.0% 91.9% 96.2% 97.7% 94.3%

2-3m N/A 96.3% 81.7% 96.5% 91.9% 82.3% 93.7% 95.2%
3-5m N/A 96.2% 87.4% 94.5% 89.4% 76.9% 93.6% 90.8%
5-10m N/A 96.0% 86.6% 93.6% 93.1% 84.3% 87.4% 91.4%

(c) ERF-PSPNet on real-world dataset [27] in terms of terrain awareness.

To analyze the major concern of detection performance for
real-world assistance, we collect results over several depth
ranges: within 2m, 2-3m, 3-5m and 5-10m. In navigational
assistance, 2m is the general distance for avoiding static
obstacles while the warning distance should be longer when
a moving object approaches, e.g. 3m for pedestrians and 5m
for cars. In addition, the short-range of ground area detection
helps to determine the most walkable direction, while supe-
rior path planning could be supported by longer traversability
awareness, e.g. 5-10m. Table II(b) shows both the IoU
and Pixel-wise Accuracy (P-A) of traversability awareness,
which is the core task of navigational assistance. Here,
the traversable areas involve the ground, floor, road, grass
and sidewalk. We compare the traversable area detection of
our ERF-PSPNet to a state-of-the-art architecture ENet and
a depth based segmentation approach 3D-RANSAC-F [1],
which estimates the ground plane based on RANSAC and
filtering techniques by using the dense disparity map. As
the depth information of the ground area may be noisy
and missing in dynamic environments, we implemented a
RGB image guided filter [5] to fill holes before detection.
Thereupon, the traditional 3D-RANSAC-F achieves decent
accuracy ranging from 2m to 5m and it excels ENet from
2m to 3m as the depth map within this range is quite dense
thanks to the active stereo design. Still, our ERF-PSPNet
outperforms ENet and 3D-RANSAC-F in both ranges. As
far as terrain awareness is concerned, even if the IoU is not
very high, the segmentation results are still of great use.
For the VI, it is preferred to know that there are stairs or
there is an approaching pedestrian in some direction even
if the shape is not exactly accurate. Also, it is observed in
Table II(c) that most of the Pixel-level Accuracy (P-A) within
different ranges are over 90%, which reveals the capacity
of our approach for the unification of these detection tasks.
Fig. 4 exhibits a group of pixel-wise results generated by
our ERF-PSPNet, ENet, 3D-RANSAC-F, and Stixel-level
segmentation rendered by a procedure FreeSpaceParse [7].
On the one hand, our approach yields longer and more
consistent segmentation which will definitely benefit the

traversable area detection. On the other hand, it shows very
promising results for providing the terrain awareness within
this unified framework.

IV. CONCLUSIONS

Navigational assistance for the Visually Impaired (VI) is
undergoing a monumental boom thanks to the developments
of Intelligent Vehicles (IV) and computer vision. However,
monocular detectors or depth sensors are generally applied
in separate tasks. In this paper, we derive achievability
results for these perception tasks by utilizing real-time se-
mantic segmentation. The proposed framework, based on
deep convolutional neural network and depth segmentation,
not only benefits the essential traversability awareness at both
short and long ranges, but also covers the needs of terrain
awareness in a unified manner. In the future, we aim to
continuously improve our navigation assistive approach, pre-
cisely to incorporate polarization imaging and user studies.

ACKNOWLEDGEMENT

This work has been partially funded by the Zhejiang
Provincial Public Fund through the project of visual assis-
tance technology for the blind based on 3D terrain sensor
(No. 2016C33136) and cofunded by State Key Laboratory
of Modern Optical Instrumentation.

This work has been partially funded by the Span-
ish MINECO/FEDER through the SmartElderlyCar project
(TRA2015-70501-C2-1-R), the DGT through the SERMON
project (SPIP2017-02305), and from the RoboCity2030-III-
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Rus, “Enabling independent navigation for visually impaired people
through a wearable vision-based feedback system,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on. IEEE,
2017, pp. 6533-6540.

[8] F. Ahmed and M. Yeasin, “Optimization and evaluation of deep ar-
chitectures for ambient awareness on a sidewalk,” in Neural Networks
(IJCNN), 2017 International Joint Conference on. IEEE, 2017, pp.
2692-2697.

[9] J. J. Guerrero, A. Perez-Yus, D. Gutierrez-Gomez, A. Rituerto and G.
Lopez-Nicolas, “Human navigation assistance with a RGB-D sensor,”
2015, pp. 285-312.

[10] C. Stahlschmidt, S. von Camen, A. Gavriilidis and A. Kummert,
“Descending step classification using time-of-flight sensor data,” in
Intelligent Vehicles Symposium (IV), 2015 IEEE. IEEE, 2015, pp. 362-
367.

[11] K. Yang, K. Wang, R. Cheng, W. Hu, X. Huang and J. Bai, “Detecting
Traversable Area and Water Hazards for the Visually Impaired with a
pRGB-D Sensor,” Sensors, 2017, 17(8), 1890.

[12] S. Wang and L. Yu, “Everyday information behavior of the visually
impaired in China,” Information Research, 2017, 22(1).

[13] K. Saleh, R. A. Zeineldin, M. Hossny, S. Nahavandi and N. A. El-
Fishawy, “Navigational Path Detection for the Visually Impaired using
Fully Convolutional Networks,” in Systems, Man, and Cybernetics
(SMC), 2017 IEEE International Conference on. IEEE, 2017, pp.
1399-1404..

[14] KR-VISION Technology, “To tackle the challenges for the visually
impaired,” http://krvision.cn/, 2016.

[15] J. R. Rizzo, Y. Pan, T. Hudson, E. K. Wong and Y. Fang, “Sensor
fusion for ecologically valid obstacle identification: Building a com-
prehensive assistive technology platform for the visually impaired,” in
Modeling, Simulation, and Applied Optimization (ICMSAO), 2017 7th
International Conference on. IEEE, 2017, pp. 1-5.

[16] P. Kwiatkowski, T. Jaeschke, D. Starke, L. Piotrowsky, H. Deis and
N. Pohl, “A concept study for a radar-based navigation device with
sector scan antenna for visually impaired people,” in Microwave Bio
Conference (IMBIOC), 2017 First IEEE MTT-S International, IEEE,
2017, pp. 1-4.

[17] K. Yang, K. Wang, H. Chen and J. Bai, “Reducing the minimum
range of a RGB-depth sensor to aid navigation in visually impaired
individuals,” Applied Optics, 2018, 57(11), 2809-2819.

[18] E. Romera, L. M. Bergasa and R. Arroyo, “Can we unify monocular
detectors for autonomous driving by using the pixel-wise semantic
segmentation of CNNs?” arXiv preprint arXiv:1607.00971, 2016.

[19] A. Paszke, A. Chaurasia, S. Kim and E. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[20] E. Romera, J. Alvarez, L. M. Bergasa and R. Arroyo, “ERFNet:
Efficient Residual Factorized ConvNet for Real-Time Semantic Seg-
mentation,” IEEE Transactions on Intelligent Transportation Systems,
2017, 19(1), 263-272.

[21] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881-2890.

[22] L. Keselman, J. I. Woodfill, A. Grunnet-Jepsen and A. Bhowmik,
“Intel (R) RealSense (TM) Stereoscopic Depth Cameras,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE
Conference on. IEEE, 2017, pp. 1267-1276.

[23] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[24] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba,
“Semantic understanding of scenes through the ADE20K dataset,”
arXiv preprint arXiv:1608.05442, 2016.

[25] R. Mottaghi, X. Chen, X. Liu, N. G. Cho, S. W. Lee, S. Fidler, et al.,
“The role of context for object detection and semantic segmentation in
the wild,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 891-898.

[26] H. Caesar, J. Uijlings and V. Ferrari, “COCO-Stuff: Thing and Stuff
Classes in Context,” arXiv preprint arXiv:1612.03716, 2016.

[27] Kaiwei Wang Team, “Terrain Awareness Dataset,”
http://wangkaiwei.org/projecteg.html, 2017.


