
KrNet: A Kinetic Real-Time Convolutional Neural 

Network for Navigational Assistance 

Shufei Lin 1[0000-0003-4911-9443], Kaiwei Wang1, Kailun Yang1, and Ruiqi Cheng1 

1 State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 

China  

wangkaiwei@zju.edu.cn 

Abstract. Over the past years, convolutional neural networks (CNN) have not 

only demonstrated impressive capabilities in computer vision but also created 

new possibilities of providing navigational assistance for people with visually 

impairment. In addition to obstacle avoidance and mobile localization, it is help-

ful for visually impaired people to perceive kinetic information of the surround-

ing. Road barrier, as a specific obstacle as well as a sign of entrance or exit, is an 

underlying hazard ubiquitously in daily environments. To address the road barrier 

recognition, this paper proposes a novel convolutional neural network named 

KrNet, which is able to execute scene classification on mobile devices in real 

time. The architecture of KrNet not only features depthwise separable convolu-

tion and channel shuffle operation to reduce computational cost and latency, but 

also takes advantage of Inception modules to maintain accuracy. Experimental 

results are presented to demonstrate qualified performance for the meaningful 

and useful applications of navigational assistance within residential and working 

area. 
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1 Introduction 

According to the World Health Organization, 253 million people are estimated to be 

visually impaired and 36 million people are totally blind all over the world [1]. The 

most critical navigation task for people with visually impairment is to reach a destina-

tion without colliding with obstacles. Towards this end, mobile localization plays an 

important role beyond obstacle avoidance. In some general mobile navigational appli-

cations, the outdoor positioning error is between 3 to 10 meters, and it is even worse 

under some severe weather conditions. Visual place recognition provides valuable in-

formation to enhance situational awareness. It is important noting that the road barrier, 

which is designed to limit the passage of vehicles on the road, is usually set at the gate 

of a residential area or working area, as shown in Figure 1. The road barrier could be 

taken as a sign of the entrance or exit. For visually impaired people, the difficulty in 

these scenarios is that the road barrier can be bypassed instead of being avoided, which 

is different from ordinary obstacles. Thereby, barrier recognition is clearly desirable to 
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complement general assistance systems featuring obstacle avoidance or mobile locali-

zation. 

As is known to all, convolutional neural networks have not only achieved remarkable 

capabilities in both computer vision [2-4] and robotics communities [4] through years 

of research, but also been applied to visual place recognition [5] to enhance situational 

awareness. Following this line, we focus on the recognition of road barrier and dedicate 

to providing assistance based on CNN within specific scenarios where visually im-

paired people travel in daily environments, such as residential area or working area.  

To address the road barrier recognition, this paper proposes a light weight and effi-

cient convolutional neural network named KrNet. The architecture of our network, 

based on depthwise convolution and channel shuffle operation, has been designed to 

maximize its performance and keep efficiency that is suitable for real-time inference 

on a portable CPU. We evaluate the proposed network in navigational assistance within 

residential community, describing the complete applied process of our multi-sensor 

system to assist visually impaired people in real-world scenarios.  

 

(a)                             (b)                              (c)                             (d) 

Fig. 1. Classification results in real-world scenarios. The images are classified as two classes, 

namely “barrier” and “other” (non-barrier), with the corresponding classification confidence 

value. (a) Road barrier set at the entrance of a working area. (b) Road barrier set at the entrance 

of an underground parking lot. (c) (d) Scenarios without road barrier are classified correctly as 

background even though the texture of curbs is similar to the texture of road barriers. 

2 State of the Art 

Recent researches on deep convolutional neural networks have concentrated on im-

proving the classification accuracy. Benefit from large datasets (e.g. ImageNet [6]), 

powerful hardware and improved algorithm, AlexNet [2] eventually achieved its suc-

cess in 2012. To further promote the accuracy, a straightforward way is to increase the 

depth and width of networks. VGG [7] replaces a 7×7 filter with a few 3×3 filters but 

still simply stacks standard convolutional layers. GoogLeNet [8] proposes Inception 

module which simultaneously uses four filters with different kernel size to extract fea-

ture. ResNet [9] utilizes the bypass connection solving the notorious problem of van-

ishing gradients to achieve impressive performance. However, all of the networks 

above have large depth and size, which poses a huge challenge for deploying these deep 

learning algorithms on the mobile devices with limited computational resources. The 

compression and acceleration of CNN models have become one of the most important 

research fields in both academia and industry. Deep compression [10] makes use of 

pruning, vector quantization and Huffman encoding to compress weights. Distilling 
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[11] uses a larger pre-trained network and then transfers it to train a smaller network. 

SqueezeNet [12] is based on the Fire module which is comprised of a squeeze convo-

lution layer and an expand layer. MobileNet [13] uses depthwise separable convolu-

tions to reduce computational cost. A channel shuffle operation is come up with to al-

low input and output channels to be related with each other [14]. To the best of our 

knowledge, all these networks have not been used to aid visually impaired individual 

in navigation. 

For the visually impaired, we have already presented preliminary studies related to 

navigational assistance. Specifically, we expand the detection range of traversable area 

using RealSenseR200 [15], detect water hazards with a polarized RGB-Depth sensor 

[16], and detect pedestrian crosswalk [17] and crossing lights [18] at intersections. 

However, the road barrier is taken as a usual obstacle in these researches. In this paper, 

we include novel contributions and results to extend previous proof-of-concepts. 

3 System Overview 

Real-time image classification on mobile devices with limited computational resources 

often requires small memory footprint and rapid response. The critical issue is how to 

strike a judicious tradeoff between latency and accuracy. For this reason, we need to 

take the specific application scenario and the hardware platform into consideration. As 

shown in Figure 2, our system consists of a pair of wearable smart glasses and a mobile 

processor (Kangaroo [19]). The pair of wearable smart glasses is integrated with a 

RGB-Depth sensor (RealSense R200) and a bone-conduction headphone. On one hand, 

RealSense R200 has high environmental adaptability [15] and delivers real-time RGB-

Infrared image streams. The color image contains rich chromatic information while in-

frared camera provides more stable images than color camera during walking. On the 

other hand, its small size and light weight make it quite suitable to integrate into a pair 

of wearable glasses. As far as the feedback is concerned, the bone conduction head-

phone transfers the recognition results to visually impaired people. This is important as 

visually impaired people need to continue hearing environmental sound and the bone 

conducting interface allow them to hear a layer of augmented acoustic reality that is 

superimposed on the environmental sound. 

In the way to destination, the mobile processor continually calculates the distance 

using GPS signals between the current point of interest (POI) and the destination which 

we have already marked. To detail this, when the distance is less than 20 meters, the 

processor starts an image classification thread. Firstly, the camera perceives color im-

ages as the input images of KrNet. Secondly, KrNet outputs the results of image clas-

sification. Lastly, the bone-conduction headphone transfers sound to the visually im-

paired. Specifically, If the current images are classified as “barrier”, the system will 

remind the visually impaired of reaching the destination. When the distance is larger 

than 20 meters, the processor terminates the image classification thread. 
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Fig. 2. Overview of the navigation system: (a) The wearable prototype. (b)The outline of the 

KrNet architecture from the input to the prediction. (c) The navigational assistance system con-

sists of a pair of wearable smart glasses and a mobile processor. 

4 Network Architecture 

The architecture of KrNet is depicted in Table 1. The data layer takes as input a 

160×160×3 image. The entry module consists of a standard convolutional layer and two 

Inception blocks proposed by [20], which reduces the grid-size of feature maps while 

expands the filter banks. The convolutional layer (Conv1) and max pooling layer (Max 

Pool0) take the output of the first convolutional layer (Conv0) as their input concur-

rently and filter it with 16 kernels of size 3×3. Afterwards, the output of Conv1 and 

Max Pool0 are concatenated as input of the next Inception block.  

Most networks use standard convolutional layers for convolution operations where 

every filter operates on all of input channels until Xception [21] assumes that cross-

channel correlations and spatial correlations can be mapped completely separately. 

Xception comes up with depthwise separable convolution which replaces a full convo-

lutional operator with a factorized version that splits convolution into two separate lay-

ers. However, it impedes information flow between different channels, which might 

result in the degradation of an individual convolutional filter and weaken the represen-

tation of the network. To avoid this situation, the middle of our model consists of four 

depthwise separable convolutional blocks whose groups are set at 4, which require less 

computation than standard convolutions as well as sacrifices only a small reduction in 

accuracy.  

(a) (b) (c) 
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As shown in Figure 3, a depthwise separable block includes a preparation pointwise 

convolutional layer, a shuffle layer, a depthwise convolutional layer and a separable 

pointwise convolutional layer. The preparation pointwise convolutional layer 

(GConv1) takes as input feature maps from the previous layer, reducing the channel 

dimension of feature maps as well as dividing the channels into 4 groups. The shuffle 

layer [14] reshapes, transposes and flattens the output channels to make sure that input 

and output channels are fully related to each other when the depthwise convolutional 

layer (GConv2) takes data from different groups after GConv1. Finally, the separable 

pointwise convolutional layer (GConv3) is used to recover the channel dimension. 

 

Fig. 3. (a) Input DF×DF×M feature maps from the previous layer. (b) DF×DF×1/4N feature maps 

from GConv1. (c) DF×DF×1/4N feature maps after channel shuffle operation. (d) DF×DF×1/4N 

feature maps from GConv2. (f) Output DG×DG×N feature maps from GConv3. 

If standard convolution takes as input hi × wi × di feature maps and applies convolu-

tional kernel of size k × k × dj to produce hj × wj × dj output maps. Standard convolu-

tional layer has the computational cost: 

 h𝑖 ∙ 𝑤𝑖 ∙ 𝑘 ∙ 𝑘 ∙ 𝑑𝑖 ∙ 𝑑𝑗 (1) 

Depthwise separable convolution block with shuffle operation of group 4, while each 

filter operates only on the corresponding input channels within same group, works al-

most well as regular convolutions but only cost: 

 ℎ𝑖 ∙ 𝑤𝑖 ∙ 𝑑𝑖 ∙ 𝑑𝑗 ∙
1

4
+ ℎ𝑖 ∙ 𝑤𝑖 ∙ 𝑘 ∙ 𝑘 ∙ 𝑑𝑗 ∙

1

4
+ ℎ𝑖 ∙ 𝑤𝑖 ∙ 𝑑𝑗 ∙

1

4
∙ 𝑑𝑗 (2) 

Our network has a computational cost of 200 million multiply-adds which is much 

lower than MobileNet [14]. In this regard, the efficiency is guaranteed to enable real-

time inference on mobile devices. 

All layers are followed by a batch normalization and a ReLU nonlinear activation 

function. The final average pooling reduces the spatial resolution to 1 before the Soft-

max loss layer. Our model was trained in Caffe CNN framework with stochastic gradi-

ent descent [22]. The dataset is available at [23]. Most of images are manual collected 

and resized to 320 × 240. To make the model robust against the varied types of images 
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from real world, we perform a group of data augmentation including horizontally flip-

ping, adding Gaussian noise and color jittering.  

Table 1. The outline of the proposed network architecture 

Layer name Type Computational cost 

Conv0 Standard convolution 1602×32×3×16  

Max Pool0 Max pooling 1602×32×16 

Conv1 Standard convolution 1602×32×16×16 

Max Pool1 Max pooling 802×32×32 

Conv2 Standard convolution 802×32×32×32 

Conv3 block 
depthwise convolution block 

with shuffle operation 

402×12×64×48 + 402×32×48 + 

402×12×48×192 

Max Pool2 Max pooling 402×32×192 

Conv4 block 
depthwise convolution block 

with shuffle operation 

202×12×192×72 + 202×32×72 + 

202×12×72×288 

Conv5 block 
depthwise convolution block 

with shuffle operation 

182×12×288×96 + 182×32×96 + 

182×12×96×384 

Max Pool3 Max pooling 182×32×384 

Conv6 block 
depthwise convolution block 

with shuffle operation 

92×12×384×120 + 92×32×120 + 

92×12×120×480 

 

5 Experiments 

We perform a set of experiments to validate the accuracy and reliability of KrNet. Table 

2 shows the experimental results about the classification performance, which are qual-

ified and satisfactory for the recognition of road barrier. In a binary classification task, 

true positive (TP) denotes the number of positive samples which were correctly pre-

dicted as positive. True negative (TN) denotes the number of negative samples that 

were correctly predicted as negative. False positive (FP) denotes the number of negative 

samples which were mislabeled as positive. And false negative (FN) denotes the num-

ber of positive samples that were mislabeled as negative. The accuracy for a class is the 

number of correctly labeled samples divided by the total number of samples as equation 

(3). The precision for a class is the number of true positives divided by the total number 

of samples labeled as belonging to the positives class (i.e. the sum of true positives and 

false positives) as equation (4).  

 Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

 Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 
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Because it might make the blind confused if misclassification happens frequently. 

In our work, to provide navigational assistance for people with visually impairment, 

more attention is paid to the accuracy and precision instead of recall rate. In real-world 

assistance, we calculate the weighted average classification confidence of multi-frames 

as the final classification confidence. The current frame has the largest weight and the 

weight decreases in previous fames. Besides, only if the weighted average confidence 

is larger than confidence threshold value which is set at 0.98, will the classification 

result be transferred to the visually impaired. It has been proved that classification per-

formance with weighted average confidence is better than without weighted average 

confidence both in accuracy and precision.  Our method enables a deep-learning-based 

system to execute at 10-35 fps on CPU and achieves kinetic real-time scene classifica-

tion. 

Table 2. Experimental results. 

Model 

type 

Without weighted average 

confidence 

With weighted average 

confidence 

Speed on 

portable 

PC 

Speed on 

CPU i5-

7400 Accuracy Precision Accuracy Precision 

KrNet 0.9832 0.8114 0.9949 1.000 10fps 35fps 

6 Conclusion and Future Work 

According to the demands of people with visually impairment, we come up with a novel 

CNN named KrNet. The experiments demonstrate the proposed model is effective and 

efficient. Future works will involve in-depth experiments regarding other scenarios, 

such as curbs and stairs that people with visually impairment come cross in their daily 

life. Moreover, the proposed KrNet will serve as whole image descriptor to extract fea-

tures for visual place recognition to achieve real-time place location on mobile devices. 
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