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Stereo cameras are widely used in wearable visually impaired assistance devices (VIADs). However, the inevitable
vibration, shock, and mechanical stress may make the camera pair become misaligned and cause a sharp decline in
the quality of the acquired depth map, which significantly influences the performance of VIADs. In this paper, we
propose an epipolar-constraint-based unconstrained self-calibration method that requires neither user involve-
ment nor specific environment, while achieving a rotation accuracy of 0.83 mrad and a translation accuracy of
0.42 mm. Several approaches are proposed to address the image matching issues, including blurred images
removal, mismatched key points removal, etc. Based on correctly matched key point pairs, a planar quadric-
distribution approach is proposed to ensure the quality and consistency of the final key point group. These col-
lection approaches ensure the reliability of key point pairs, which is the most important factor to realize high
accuracy with minimum constraint. A comprehensive set of experiments demonstrates the high robustness of the
proposed methods, which are suitable for VIADs. We also present a field test with blindfolded users to validate the
flexibility and applicability of the approach. © 2019 Optical Society of America
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1. INTRODUCTION
According to the World Health Organization, about 253 mil-
lion people are living with vision impairments, 36 million of
whom are blind [1]. For visually impaired people (VIP), daily
activities such as walking in outdoor environments are difficult
and even dangerous in some scenarios. With the aim of assist-
ing perception and navigation, visually impaired assistance de-
vices (VIADs) based on RGB-depth (RGB-D) sensors have
been widely proposed [2–5]. Because depth maps are critical
to navigational path detection and obstacle avoidance, the per-
formances of VIADs are highly related to the quality of depth
maps [6,7].

Currently, time-of-flight (ToF) [8], light-coding [9], and
stereo matching [10,11] are three major approaches to obtain
depth maps. ToF approaches usually require a projector and
detector array. The depth maps are acquired by measuring the
absolute time that a light pulse travels from a target to the de-
tector array. Light-coding approaches mainly use an infrared
(IR) projector to produce patterns with spatial codification
and reconstruct depth maps through triangulation and other
methods. However, limited by the power of the projector, the
environmental illumination, such as sunlight, which is prone to
submerge the light pulse and the projected patterns, ToF and
light-coding approaches are not robust enough for outdoor ap-
plications. Stereo cameras acquire depth maps by matching two

or more textured images derived from different lenses, which is
a passive method and works well under daylight. Augmenting
stereo cameras with an active light source, stereo matching can
adapt to various environments, making it more suitable for
VIADs [3]. In this paper, the stereo camera mounted on the
VIAD is RealSense R200 [12]. Its IR laser projector produces
a pseudo-random IR spot array on the target, enriching the tex-
ture and improving the performance of stereo matching in dark
and low-texture environments.

When matching pixels in the image pair, stereo-matching
algorithms only search pixels in the same row of the two images,
which requires every row of the two images to be accurately
aligned. The original images usually fail to meet the require-
ments because the optical axes of the two cameras are not per-
fectly parallel, and their relative translation is not horizontal,
either. Thus, image pairs must be rectified to be aligned before
stereo matching. For this reason, calibrating relative rotation
and translation of the two cameras is critical. In some scenarios,
the two cameras will not change their relative orientation and
position, so applying calibration before leaving the factory is
sufficient to meet the application requirements.

However, calibrating stereo cameras only once is not enough
for VIADs. Generally, for wearable VIADs, the integrated
stereo cameras may suffer from violent vibrations when users
walk, run, or jump in daily usage. Specifically, head-mounted

Research Article Vol. 58, No. 23 / 10 August 2019 / Applied Optics 6377

1559-128X/19/236377-11 Journal © 2019 Optical Society of America

mailto:wangkaiwei@zju.edu.cn
mailto:wangkaiwei@zju.edu.cn
mailto:wangkaiwei@zju.edu.cn
https://doi.org/10.1364/AO.58.006377


VIADs may fall down from the height of a person, introducing
heavy shock and mechanical stress to the stereo camera. Moreover,
considering the limited weight and volume of VIADs, the support
of integrated stereo cameras cannot be firm. All of these issues
make it inevitable that the two cameras may frequently change
their relative position and rotation. Although the change is rela-
tively slight, our experiment shows that merely several mrad
change of rotation may lead to depth errors as large as 100% at
distances longer than 10 m. Therefore, a stereo camera in the
VIAD needs to be accurately calibrated frequently, especially after
falling down.

There are a lot of camera calibration methods in the liter-
ature. Some of them are based on a specific calibration pattern,
special objects, or special scenes [13–20]; others are based on
global optimization, which requires the environment to be
static [21–26]. For visually impaired people, calibration pat-
terns or calibration objects are inconvenient, and the scenes
during navigation are unlikely to be static. Thus, these methods
are not suitable for VIADs. To the best of our knowledge, no
previous work has designed an unconstrained self-calibration
method for the stereo camera in VIADs.

In this paper, we propose an unconstrained self-calibration
method that requires neither user involvement nor any specific
environment, while achieving the rotation accuracy of 0.83 mrad
and the translation accuracy of 0.42 mm. Specifically, image pairs
are arbitrarily acquired by the stereo camera in the VIAD; fur-
ther, blurred and low texture ones will be removed. Key points
are extracted from every image pair and matched based on
Euclidean distances of their descriptors. To reduce mismatched
key point pairs, a valid-box method is proposed, which is based
on the priori that the disparity must be positive and the camera’s
misalignment in a stereo rig should be slight. To combine and
select key point pairs obtained from all of the image pairs, a pla-
nar quadratic distribution method is proposed, which is to en-
force area density of key points to obey quadratic distribution in
the left image. Finally, the relative rotation and translation are
solved by key point pairs based on epipolar constraint. To carry
out the calibration, VIAD users only need to wear the device and
traverse natural environments, and calibration will be accom-
plished quietly. Because the proposed method only depends
on the features in natural scenes, it can be used for all types
of stereo cameras. In this regard, the proposed method allows
stereo cameras to calibrate themselves in daily usage, greatly in-
creasing the reliability of VIAD.

To validate the flexibility and precision of the proposed
method, a series of experiments were conducted. A blindfolded
volunteer was invited to wear the VIAD and walk along the
street to perform a field self-calibration experiment. The result
shows that the accuracy of our method is close to Zhang’s cal-
ibration-pattern-based method [13]. Based on the results of
self-calibration, we carried out depth map recovery and depth
precision experiments to evaluate the quality improvement of
depth maps. The result demonstrates that our method signifi-
cantly improves the density and precision of depth maps.
Finally, a key point collection strategy comparison is imple-
mented to prove that the proposed quadric distribution method
is of important relevance to the performance of the proposed
self-calibration.

The remainder of this paper is structured as follows:
Section 2 reviews the related works that address self-calibration
approaches. Section 3 introduces the principles and algorithms
used in the proposed self-calibration method. Section 4 intro-
duces experiments and analyzes the results. Section 5 concludes
this paper and discusses other possible applications.

2. RELATED WORK

Stereo camera calibration approaches can be categorized into
two major groups: specialized-pattern calibration approaches
and self-calibration approaches. The former approaches require
special calibration patterns, such as a chess pattern. Zhang’s
method is one of the most popular among them. Zhang’s
method requires taking photos of a chess board pattern from
different orientations and positions. Then, the camera param-
eters are initialized by solving a set of homograph matrixes
between the known chess board points and their projection
points. Finally, intrinsic and extrinsic parameters were obtained
through maximum-likelihood estimation. Zhang’s method is
not suitable for VIAD because carrying a chess pattern with
visually impaired people is inconvenient, and taking photos as
required is too difficult for them. But because Zhang’s method
is the most widely used one, we take its mean result as the base-
line for comparison.

Stereo camera self-calibration methods fall into two
groups: 1) calibration-object-dependent methods [14–20]
and 2) global-optimization methods [21–26].

For the first approaches, Broggi et al. [15] presented an
approach of calibrating the stereo cameras mounted on an
autonomous vehicle. A number of marks were placed on the
hood of the vehicle, which were taken as calibration patterns.
The relative orientation of cameras was estimated by minimiz-
ing the reprojection error of the marks. Collado et al. [16] pre-
sented a self-calibration method focusing on stereo cameras
mounted on vehicles, which adopted road lane boundaries
as calibration patterns. They defined the fitness function ac-
cording to the parallelism and coincidence of projections of
the road lane boundaries. Then, pitch, roll, and height of the
stereo camera were estimated through a genetic algorithm.
Banglei et al. [17] calibrated stereo cameras through homogra-
phy constraints based on image pairs of planar scenes. The au-
thors constructed a polynomial equation system with radial
distortion and solved the equation with at least five correspond-
ing point pairs. Hu et al. [18] presented an approach of intrinsic
parameters calibration by using two perpendicular planes as cal-
ibration objects. The authors assumed that the relationship of
the two cameras was pure translation and the two cameras
shared the same intrinsic parameters. Liu et al. [19] presented
an approach to calibrate the relative pose between stereo cam-
eras based on laser spots projected on parallel planes. Bok-Suk
et al. [20] presented an approach to calibrate a wide-baseline
stereo camera mounted on offshore facilities by exploiting
sea horizon and points at infinity. These approaches require
no specific calibration pattern, but some special objects or
scenes are indeed adopted as calibration patterns. Those special
objects or scenes may not be difficult to find in their applica-
tion, but, for VIADs, they are not flexible enough.
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For the second approaches, some researchers combined
camera calibration with simultaneous localization and mapping
[21,25,26]. These researchers regarded camera parameters as var-
iables to be optimized rather than known parameters and applied
global optimization to camera parameters and 3D structure of
environments at the same time. Thao et al. [22] presented a frame-
work for continuous calibration of stereo cameras. Camera
parameters are estimated through epipolar constraint, trilinear
constraints, and bundle adjustment. Then, they are continuously
refined through a Karman filter. Fadi [23] calibrated the two cam-
eras of a stereo rig independently rather than take them as a whole.
A series of poses of the left and right camera is initialized inde-
pendently through epipolar constraints. Then, the final relative
pose of the two cameras is estimated through nonlinear optimi-
zation. Shuo et al. [24] proposed a method based on image pairs,
which applies bundle adjustment to calibrate the mast mechanism,
accelerometer, and gyroscope at the same time. These approaches
don’t require a calibration pattern, but, because the environment is
required to be static, they are not suitable for VIADs.

Although all of these approaches are instructive, they cannot
totally meet requirements of the stereo camera in VIADs. In the
following sections, we will elaborate on the proposed self-
calibration method and its performance.

3. APPROACH

A. Principles of Self-Calibration
A stereo camera has two horizontally separated cameras, as
shown in Fig. 1. The rotation and translation from the right to
left camera can be represented as rotation matrix R and trans-
lation vector t, respectively, where R is a 3 × 3 matrix and t is a
3 × 1 matrix.

Thus, the relationship of the two cameras can be represented
as Eq. (1), where p1��x1 y1 z1 �T and p2��x2 y2 z2 �T are
the coordinates of one point P in the coordinate system of the
left camera and right camera, respectively. In this paper, unless
specified, subscript 1 and subscript 2 stand for the left and right
camera, respectively:

p2 � R · p1 � t: (1)

The antisymmetric matrix �t�× is defined as Eq. (2), which is the
matrix form of the cross product of vector t, that is, for an
arbitrary vector a, jt × aj can be represented as

�t�× �
2
4 0 −tz ty

tz 0 −tx
−ty tx 0

3
5: (2)

Then, the epipolar constraint can be derived based on Eq. (1).
The epipolar constraint is shown as Eq. (4), where E is called
the essential matrix. Once E is given, the translation vector t
and rotation matrix R can be obtained by applying singular
value decomposition (SVD) to E :

E � �t�×R, (3)

pT2 Ep1 � 0: (4)

In practice, the locations of key point P on the two image
planes m1�u1, v1� and m2�u2, v2� are known, as shown in
Fig. 2, where coordinates of p1 and p2 are unknown. A pinhole
model can be used to describe the relationship between the
location on the image plane and the coordinates in the camera
coordinate system as in Eq. (5):

sm̃ � A · p: (5)

In Eq. (5), m̃ � � u v 1 �T is the homogeneous coordinate of
point m on the image plane, and A is the intrinsic parameter
matrix of the camera, which is shown in Eq. (6). Precisely,
A describes the focus length and principal point of the camera,
where all parameters are in pixels. p � � x y z �T is the co-
ordinate of the object point in the camera coordinate system,
and s is a factor, which equals to z in the coordinate of point p:

A �
2
4 f x 0 u0

0 f y v0
0 0 1

3
5: (6)

Thus, Eq. (4) can be rewritten as Eqs. (7) and (8), where F is
called the fundamental matrix. As shown in Eq. (8). m̃1 �
� u1 v1 1 �T and m̃2 � � u2 v2 1 �T are two points lo-
cated on the image plane that is imaged by the same object
point. Once sufficient point pairs are collected, F can be solved
according to Eq. (8):

F � A−T
2 EA−1

1 , (7)

m̃T
2 Fm̃1 � 0, (8)

where A1 and A2 are the intrinsic parameter matrices of the left
and right camera, respectively. In this paper, the intrinsic

Fig. 1. Illustration of relative rotation and translation. (a) Cam l and
Cam r are the left camera and right camera with coordinate systems
o1 − x1y1z1 and o2 − x2y2z2, respectively. R denotes the rotation from
o2 − x2y2z2 to o1 − x1y1z1, t denotes the translation between two par-
allel coordinate systems from o 02 − x 02y 02z

0
2 to o1 − x1y1z1. (b) Rotation

is represented by roll, pitch, and yaw. Fig. 2. Illustration of epipolar constraint.
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parameters are regarded as known, and, because the lens of
the RealSense R200 is thin and well-fixed with adhesive, the
intrinsic parameters are unlikely to be changed. In this sense,
once the fundamental matrix F is solved, essential matrix E can
be easily obtained through Eq. (9):

E � AT
2 FA1: (9)

As mentioned above, the rotation matrix R and the translation
vector t can be solved by applying SVD to essential matrix E .
However, it should be noted that the norm of vector t cannot
be solved by epipolar constraint because there is no constraint
on the length of the vector t in epipolar constraint. The geom-
etry meaning of Eq. (8) explains it clearly. Equation (8) indi-
cates that the vector o1m1

⇀
, o2m2
⇀

, and t should be coplanar.
If P�X , Y ,Z � is not specified, P may locate at any point on
line o1m1, leading to the uncertainty of the length of jo1o2j.

Epipolar constraint cannot solve the length of vector t ; for
stereo cameras, however, there is another constraint, that is, the
relative rotation and translation of the two cameras are fixed,
which is not considered in epipolar constraint. Unfortunately,
even with this additional constraint, length of vector t cannot
be solved in any way without the size of objects, either. We
prove this as follows: assuming there are N common key points
in M pairs of images; in other words, there are N common
object points in the real world, and they are imaged inM views.
Formally, Pi denotes the coordinate of the ith common object
point in the world coordinate system, and pij1 and pij2 indicate
the coordinate of Pi in the left and right camera coordinate
system at the jth view. The constraints of the stereo rig can
be represented by Eq. (10):

pij1 � Rj
1 · P

i � t j1,

pij2 � Rj
2 · P

i � t j2,

pij2 � R · pij1 � t,

i ∈ �1,N �; j ∈ �1,M �: (10)

Without loss of generality, we set the coordinate system of the
left camera in the first view to be the world coordinate system,
that is, Pi � pi01 Then, Eq. (10) can be rewritten to be

pij1 � Rj
1 · p

i0
1 � tj1 �a�

pij2 � Rj
2 · p

i0
1 � tj2 �b�

pij2 � R · pij1 � t �c�
i ∈ �1,N �; j ∈ �1,M �: (11)

Substituting Eqs. (a) and (b) into (c) in Eq. (11), two additional
constraints can be obtained, as shown in Eq. (12), which
describes that the relative pose of the two cameras is fixed:

R � Rj
2�Rj

1�−1

t � t j2 − R · tj1: (12)

According to the geometry meaning of equations, there should
be at least one set of solutions, which can be represented as
Rj
01, t

j
01;R

j
02, t

j
02;R0, t0. It is not difficult to verify that, for

any nonzero factor a, Rj
01, a · t

j
01;R

j
02, a · t

j
02;R0, a · t0 are

solutions of Eqs. (11) and (12), too. Therefore, the additional
constraints cannot determine the length of vector t.

B. Algorithm
The misalignment of the stereo camera in VIADs is usually
slight. But it may cause a sharp decline in quality of the depth
map, especially for the regions with large depth. Although the
quality of the depth map declines, the VIAD still can assist per-
ception and navigation in relatively low performance. Therefore,
the accuracy and robustness of self-calibration are extremely im-
portant, while the real-time performance of self-calibration is
comparably less important. Because the two cameras of a stereo
camera are relatively fixed, in every pair of images, matched key
points should represent the same epipolar constraint. Thus, suf-
ficient image pairs can be taken and combined by certain strat-
egies to achieve high accuracy. Based on this idea, we designed
the self-calibration algorithm as shown in Fig. 3.

Infrared image pairs are acquired through the stereo camera,
but only clear and high-texture ones remain. For every image
pair, key points are extracted through SURF [27] and matched
based on the Euclidean distance of their descriptors. Because of
the noise of image sensors, parallax of the two cameras, limi-
tation of descriptors, and other factors, key points matching is
not completely reliable. To increase robustness of key point
matching, a valid-box method is proposed to remove mis-
matched key point pairs.

To comply with epipolar constraint, the two matched key
points in one image pair should represent the same point in
object space. However, this situation is not so ideal in practice.
On the one hand, because of aberration of the lens, the imaging
model is not compatible with the pin-hole model completely;
on the other hand, location error of the matched key point is

Fig. 3. Flow chart of the proposed algorithm.
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inevitable. To improve the robustness and accuracy of the self-
calibration, a quadric distribution strategy is applied to com-
bine key points in different image pairs. Finally, the relative
rotation and translation are solved by these key point pairs.

1. Blurred and Low-Texture Images Removal
Because blurred and low-texture images are the disadvantage of
key points extraction, it is necessary to remove them. In general,
clear and high-texture images are rich in high-frequency variation
in intensity, while blurred or low-texture images are poor in this
regard. Thus, a gradient feature can be used to distinguish blurred
or low-texture images. Specifically, we convolve a third-order
Laplacian operator with the original image to obtain the Laplace
response, which stands for the gradient feature map of the original
image. For clear and high-texture images, their Laplace responses
are rich, resulting in a large gray-scale variance; if the image is
blurred or low texture, however, the variance should be small.
Therefore, a variance threshold can be set to remove the blurred
image. To strike a good trade-off between the collection difficulty
and the image quality, it is necessary to collect image samples and
analyze their variances. Then, the variance value can be chosen as
the threshold when most of the clear images remain and most of
the blurry images are removed. Figure 4 shows the difference of
clear images, blurred images, and low-texture images. It is obvious
that the gray-scale histogram of the clear and rich-texture image
spreads widely, while the gray-scale histograms of low-texture and
blurry images are narrow.

2. Mismatched Key Point Pairs Removal
For every image pair, key points are extracted through SURF
and matched based on the Euclidean distance of their descrip-
tors. In this paper, descriptors of key point are 64-dimensional
vectors. Because the Euclidean distance of two descriptors rep-
resents the similarity of the two points, the larger their
Euclidean distance is, the more likely they are mismatched.
Thus, a common matching strategy is to simply set a
Euclidean distance threshold as Eq. (13) to remove mismatched
key point pairs, where Coef is a constant, andDmin andDmax are
the minimal and maximal Euclidean distance of all the key
point pairs in the image pair, respectively:

th � Coef · �Dmin � Dmax�: (13)

Straightforwardly, a stricter threshold can reduce mismatched
key point pairs but cannot remove all of them. In this paper,
although the two cameras of the stereo camera are not com-
pletely parallel and horizontal, their relative rotation and trans-
lation misalignment are quite slight. Thus, a pair of matched
key points in left and right images must fall in a narrow hori-
zontal band. In addition, disparities are always positive; the
matched key points in the right image must locate at the right
side of the corresponding key points in the left image. Thus, for
a given key point in the left image, a narrow rectangle valid box
can be set in the right image, and, once the corresponding right
key point falls out of the valid box, the matched key point pair
can be regarded as invalid and removed. This way, the matching
result obtained by Euclidean distance threshold can be refined
by the valid box.

In this paper, we set the rectangle valid box to be 20 pixels in
width and 10 pixels in height. As shown in Fig. 5, the obviously
wrong matched key point pairs pointed by red arrows in (a) can
be effectively removed. Furthermore, the key point pairs at the
top of (a) are points with large depth, and, if they are correctly
matched, their disparities should be small positive value. But
they are removed, as shown in (b), meaning that their dispar-
ities are either negative or over 20 pixels. Either one of the two
possibilities is wrong and should be removed.

3. Planar Quadric Distribution
As discussed at the beginning of the section, matched key point
pairs in every image pair should comply with the same epipolar
constraint, and the strategies to select and combine key points
over pairs of images to achieve optimal accuracy are the key to
the problem.

In order to address the above issue, a key points selection
and combination method based on planar distribution and
matching quality is proposed. Planar distribution means to

Fig. 4. Laplace responses and gray-scale histograms of different
images. (a) Clear and rich-texture image. (b) Blurred image. (c) Low-
texture image.

Fig. 5. Example of mismatched key point pair removal.
(a) Matching result by Euclidean distance of descriptors only, where
the matched pairs indicated by the red arrow are obviously wrong.
(b) Matching result refined by proposed method.
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enforce the key points pattern to obey a certain rule. More spe-
cifically, the relationship between key points area density and
the distance to the center of image is set to obey a quadratic
curve. Because key points are discrete, density must be discrete.
To approximately fit the quadratic curve, the image is divided
into a Nw × Nh-cell grid. The center density ρij of a certain cell
Cij is determined by Eq. (14), where rij is the distance between
the centers of Cij and the image, as shown in Fig. 6. In
Eq. (14), ρ0 and α are determined through two boundary con-
ditions: 1) the density at the edge of the image is zero; 2) the
integral of area densities is one:

ρij � ρ0 − α · r2ij, (14)

where ρij is regarded as the mean area density of Cij ap-
proximately. Thus, the expected amount of key points mij
in Cij can be calculated as follows, where w and h are width
and height of the image, respectively:

mij �
w · h
NwN h

ρij : (15)

For every new image pair, key point pairs are added to the
Nw × Nh cells according to the locations of key points in
the left image. Once key points falling into Cij are more than
mij, they will be sorted by their matching qualities, and only the
best mij key point pairs will remain. The quality of two matched
key points is defined to be Euclidean distance of their descriptors.
Obviously, the smaller the Euclidean distance, the more similar
the two points are. Continuously acquiring new images and
extracting key point pairs from them add to the grid until all
the cells are full. Thus, the key points on the left image will obey
the quadratic distribution approximately, as shown in Fig. 7.

The proposed quadric distribution method ensures that key
points distribute symmetrically and prevents key points from
concentrating at the edge of the image. In addition, quadric dis-
tribution ensures that key points reach the largest density at the
center of image where aberration is the smallest. Moreover, sort-
ing according to match quality ensures that key points in every
cell are the best-matched ones falling into the cell over all of the
image pairs; thus, the object point of every pair of key points
coincides better in space.

4. Relative Rotation and Translation Calculation
The relative rotation and translation are solved based on epi-
polar constraint. The essential matrix E is solved according to

Eqs. (8) and (9); then, rotation matrix R and unit vector e of
translation vector t are obtained by applying SVD to essential
matrix. The key lies in the method used to solve fundamental
matrix F . Among those methods, eight-point [28], LMed [29],
and RANSAC [30] are popular. In this paper, the RANSAC
method with nonstrict parameters is adopted to remove some
outlier points; then, the eight-point method is applied to solve
the fundamental matrix.

In the previous section, we proved that only unit vector
e of vector t could be calculated through the proposed self-
calibration method. But because the stereo rig in the VIAD is
not likely to be stretched or compressed, the distance of the cam-
eras should be constant, meaning that the norm of t should be
constant. The change of translation vector t is mainly caused by
the rotation of the left camera, which changes the components
of t. Thus, we get tx , ty, tz by multiplying unit vector e by the
distance of the two cameras obtained in the previous section.

4. EXPERIMENTS

In this section, the approaches and results of experiments are elab-
orated. First, Zhang’s method was applied, and the average results
were taken as the baseline. Then, field self-calibration experi-
ments were implemented at the Yuquan Campus of Zhejiang
University, Hangzhou (China). After that, depth map recovery
and depth precision experiments were implemented to analyze
depth map quality improvement through self-calibration. Finally,
several distribution strategies were compared to prove that the
quadric distribution was of great significance to the accuracy.

AVIAD named “Intoer” [31], as shown in Fig. 8, was used to
carry out the experiments. The Intoer is a glasses-like device,
where a RealSense R200 stereo camera is mounted on the front,
a pair of bone conduction headphones are mounted on the back,
and a USB 3.0 cable is connected to a portable computer. Images
and depth maps are acquired by the stereo camera and trans-
ferred by the USB cable. Obstacles and traversable area detec-
tions are implemented on the portable computer based on
the acquired images and depth maps [3,4]. Finally, the detection
results are notified to the VIP through customized stereo sound.

Fig. 6. Area densities calculation. The green circles are key points in
one image pair that have been matched. The red grid divides the left
image into Nh × Nw cells; for a certain one of them, the key point area
density is defined as the equation in the image.

Fig. 7. Illustration of key points collection and quadric distribution.
(a) The right images are the sequence of image pairs and the matched
key points; the left images show how key points are filled into the grid.
(b) The result of quadratic distribution.
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A. Zhang’s Calibration Method
Because Zhang’s method is the most widely used calibration
method, its calibration results were taken as the baseline to
evaluate the performance of the proposed self-calibration
method. To ensure the performance of Zhang’s method, a
high-precision chess pattern was used to be the calibration pat-
tern, as shown in Fig. 9. The chess pattern is a 400 mm width
square glass plate. Grids of the pattern are 25 mm width thin
metal films, whose size error is superior to 10 μm parallelism,
and perpendicularity errors are lower than 0.09 mrad.

We implemented Zhang’s calibration method seven times.
The calibration results are shown in Table 1, where yaw, pitch,
roll are the rotation angles around axis Z ,Y ,X , respectively,
and tx , ty, tz are components of translation vector t along
the X , Y ,Z axis, respectively. The mean value of the seven cal-
ibration results is taken as the baseline in the following sections.

B. Field Self-Calibration Experiment
We set up the experiment as shown in Fig. 10(a). A volunteer
was invited to wear the VIAD with a misaligned stereo camera,
and the proposed self-calibration algorithm ran on the hand-
held laptop. In the field test, the volunteer walked along streets
at the Yuquan campus of Zhejiang University, where routes
were recorded by GPS during the experiment. When the vol-
unteer walked, the self-calibration algorithm ran at the same
time, which automatically acquired one pair of images every
0.7 s until the calibration finished. The resolution of images
is 640 × 480, which is determined by the stereo camera.

The self-calibration was implemented seven times continu-
ously. Routes of the volunteer are shown in Fig. 10. The routes
consisted of crowded streets with vehicles and pedestrians mov-
ing on the road; further, the scenes were complex and natural
without artificial adjustment. To collect sufficient image pairs,
the volunteer needed to walk about 300–500 m, which would
take about 6 to 8 min. Reducing the time gap of image collec-
tion can reduce the time cost but may lead to repetitive distri-
bution of key points and reduce the accuracy of calibration.
With sufficient image pairs, the relative rotation and translation
were solved within several seconds. The distance and time were
determined by walking speed, richness of the environment tex-
ture, and other factors.

Results of self-calibration are shown in Table 2. According
to the table, the absolute differences between the mean angles
and baseline values are all no more than 0.38 mrad. The maxi-
mum root mean square error (RMSE) of seven measures with
respect to the baseline value is only 0.83 mrad, while the maxi-
mum standard deviation (S.D.) by Zhang’s method is up to
0.84 mrad. As for the translation vector, the absolute
differences between the mean tx and ty and baseline values
are all no more than 0.2 mm, and the maximum RMSE with
respect to the baseline value is only 0.42 mm, quite close to
0.12 mm of Zhang’s method. tz is not considered because it
has few effects on improving the quality of depth maps but

Fig. 8. Intoer VIAD. Intoer contains a RealSense R200 stereo cam-
era, a pair of bone conduction headphones, and a USB 3.0 cable,
which mainly assists in navigation and obstacle avoidance based on
depth maps and images.

Fig. 9. High-precision glass chess pattern.

Table 1. Calibration Results of the Stereo Camera
Through Zhang’s Method

Index

Rotations/mrad Translation/mm

Yaw Pitch Roll tx ty tz
1 −0.17 −6.52 5.99 −69.88 −1.42 −0.89
2 −0.11 −6.82 5.53 −69.89 −1.15 −0.24
3 −0.02 −5.85 5.34 −69.88 −1.36 −1.05
4 0.06 −6.18 5.35 −69.88 −1.15 −1.55
5 0.02 −4.71 5.26 −69.89 −1.32 −0.64
6 0.00 −6.70 5.51 −69.89 −1.33 −0.36
7 −0.04 −4.97 5.06 −69.88 −1.45 −1.03
Mean −0.04 −5.97 5.43 −69.88 −1.31 −0.82
S.D. 0.08 0.84 0.29 0.01 0.12 0.45

Fig. 10. Experiment setup and routes. (a) The experiment setup:
the misaligned stereo camera was in the VIAD, and a laptop was used
to run self-calibration. (b)–(h) Seven routes where the volunteer
walked to implement self-calibrations; the volunteer merely walked
along the road, and images of scenes are collected automatically, while
the self-calibration ran at the same time.
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may lead to large rotation transformation on both images,
reducing the valid region of the stereo images. Thus, it can
be set to 0 to reduce parameters and improve robustness.

The self-calibration results are basements of stereo image
rectification. In this paper, the method proposed by Fusiello
et al. [30] is adopted to rectify image pairs, which can be re-
garded as twice of rotation transformation based on R and t as
follows:

sm̃ 0
2 � AsR2RtA−1

s m̃2,

sm̃ 0
1 � AsR1RtA−1

s m̃1, (16)

where R1 and R2 are the transformations caused by R; further,
to simply the following derivation, we set R1 � I 3 and
R2 � R, where Rt is the transformation based on t , As is
the common intrinsic parameter for the both images, and m̃1 �
� u1 v1 1 �T and m̃2 � � u2 v2 1 �T are original points on
the left and right images.

For a pair of rectified points, m̃ 0
1 and m̃

0
2, the disparity Δu �

u 0
1 − u

0
2 determines the depth value of the point as Eq. (17),

where D is the baseline of the stereo rig. Therefore,
d �Δu�∕Δu can be used to evaluate the depth accuracy by
the image rectification. Δv � v 01 − v

0
2 is the vertical difference

between a pair of points. Because the stereo-matching algo-
rithm has only matching points on the same row, Δv influences
the matching quality of the two images; thus, d �Δv� indicates
the density and reliability of the depth map:

d � f x · D
Δu

,

Ed � Δd
d

� d �Δu�
Δu

: (17)

In this case, to analyze the impact of self-calibration accuracy
on depth maps, the relationship between d �Δu�∕Δu, d�Δv�
and calibration results should be derived.

Directly applying Eq. (16) to obtain d �Δu� and d �Δv� is
too difficult; to simplify the calculation, yaw, roll, pitch, tx , ty ,
and tz are applied to rectify the image pair separately. Their
absolute sums are taken as final expressions of d�Δu� and
d �Δv�, as shown in Eq. (18) according to [32]

d �Δu�� jf xTH 2TV 2d �roll�j�jf x�1�TH 2�d �pitch�j
�jf xTV 2d �yaw�j�jΔuorgd�θz�j�jΔvorgd �θy�j;

d�Δv�� jf y�1�TV 2�d�roll�j�jf yTH 2TV 2d �pitch�j

�
����f yTH 2d �yaw�j

�jf y

�
TH 2

Δvorg
f y

�TV 1

Δuorg
f x

�
d �θz�

����
�jΔuorgd �θy�j;

THi �
cx −ui
f x

, TV i �
cy −vi
f y

, θz �
���� tzt

����, θy �
���� tyt

����
jtj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2x � t2y � t2x

q
; Δuorg � u1 −u2; Δvorg � v1 −v2:

(18)

Taking the parameters of RealSense R200 in this paper as an
example. In Eq. (18), f x � f y � 580, cx � 320, cx � 240,
and 0 ≤ u1 < u2 < 640; 0 ≤ v1 < 480, 0 ≤ v2 < 480;.
Because the stereo matching only processes the disparity less
than 64, thus 0 < Δu ≤ 64, the relationship between Δuorg
and Δu is derived in [32]. As mentioned in Section 3.B.2,
one pair points must locate in the narrow horizontal band, that
is, −10 < Δvorg < 10. To analyze the worst situation, we set
Δvorg � 10 and take RMSEs as d �angle� into Eq. (18); the
results are shown in Eq. (19), which means the worst situation
of d �Δu�∕Δu and d �Δv� at the center of the images:

8>>><
>>>:

d �Δu�
Δu �

�
0.41
Δu � 0.039; Δu > 3.45
0.68
Δu − 0.039; Δu ≤ 3.45

d �Δv� �
�

0.0066Δu� 0.44; Δu > 3.45
−0.0066Δu� 0.49; Δu ≤ 3.45

: (19)

In the same way, we derivate the mathematical expression of Ed
and d�Δv� under Zhang’s calibration results and unrectified
results and draw the curves, as shown in Fig. 11. The curves
are the worst Ed and d �Δv� at the center of the image, showing
that the self-calibration improves the Ed and d�Δv� greatly as

Table 2. Results of Self-Calibration

Index

Rotation/mrad Translation/mm

Yaw Pitch Roll tx ty tz
1 0.43 −6.79 5.83 −70.02 −1.46 0.33
2 0.22 −5.43 6.66 −70.02 −1.05 0.97
3 0.16 −6.39 4.92 −69.89 −0.88 4.37
4 0.36 −7.51 5.16 −69.97 −1.32 −2.50
5 0.16 −5.64 6.90 −69.96 −0.37 3.20
6 0.28 −5.69 5.04 −69.99 −1.48 −1.83
7 0.51 −7.01 5.87 −69.99 −1.56 −1.75
8 0.43 −6.79 5.83 −70.02 −1.46 0.33
Mean 0.30 −6.35 5.77 −69.98 −1.16 0.40
Baseline −0.04 −5.97 5.43 −69.88 −1.31 −0.82
RMSE 0.36 0.83 0.80 0.10 0.42 2.74

Fig. 11. Worst situation of Ed and d �Δv� at the center of the im-
ages. The red and green curves are rectified by self-calibration and
Zhang’s method, respectively, while the blue curves are the unrectified
ones. Compared with unrectified ones, the proposed self-calibration
shows much better results. Compared with Zhang’s chess-pattern-
based method, the self-calibration’s performance is similar.
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well as Zhang’s method. In this regard, the accuracy, density,
and reliability of depth maps are improved by self-calibration.

C. Depth Maps Recovery
In the experiment, Fusiello’s method was used to rectify mis-
aligned image pairs based on self-calibration and Zhang’s calibra-
tion results, respectively. The stereo-matching method SGM was
applied to obtain depth maps from image pairs. The depth maps
obtained by misaligned image pairs and two groups of rectified
image pairs are shown in the second to fourth columns of
Fig. 12.

Comparing depth maps in the second and third columns, it
is not difficult to find that the self-calibration greatly improves
the reliability and density of depth maps. For example, in
Fig. 12(a), the wall behind the sculpture should be too far
to calculate disparity, meaning that depth of the wall should
be invalid in the depth maps. But the depth maps without rec-
tification show that the wall is even closer than the sculpture,
while the depth maps rectified by self-calibration are much
more reliable; in Figs. 12(b)–12(f ), depth maps in the second
column are obviously much more sparse than in the third col-
umn, especially the depth of far objects, showing the density
improvement with self-calibration. The depth maps in the third
and the fourth column are quite similar, showing that the pro-
posed self-calibration improves the quality of depth maps as
well as Zhang’ calibration.

The experiment results meet the curves of d �Δv� in Fig. 11,
the proposed self-calibration decreases the d �Δv� as much as
Zhang’s method, leading to great improvement of the quality
on depth maps. Based on our approach, a dense and reliable
depth map is ensured, which is preferred to assist the visually

impaired so as not to leave out potential obstacles. In this re-
gard, the safety of the navigation assistance system has been
enhanced.

D. Depth Precision Experiment
To quantitatively analyze the quality improvement of depth
maps, a depth precision experiment was set up, as shown in
Fig. 13. The VIAD and a laser ranger were parallelly fixed
on a movable tripod. A rich-texture wall was taken as the target
object, and the distance between the target and the tripod
would be measured by a laser ranger and stereo camera, respec-
tively. Because the accuracy of the laser ranger is up to
�1.5 mm, its measurement result was taken as ground truth.

The depth measuring started at a distance of 0.5 m from the
wall and increased at intervals of about 0.5 m until it was about
18 m. At every step, the depth measured by a laser ranger was
recorded, while three pairs of images were collected at the same
time. Figure 14 shows four samples of the left images of ac-
quired image pairs, where the brick wall beside the door is
the rich-texture wall. The red bounding boxes were manually
drawn to sample the depth values. When drawing the box, we
obeyed the following rules: 1) the boxes should be rectangles
with the aspect ratio of 4:3; 2) the width of the boxes should be
equal to the width of the wall; 3) the boxes should locate at the
bottom of the brick wall. Thus, the boxes represented the same
region of the wall in every image. Furthermore, it is arranged
that the spots of the laser ranger always located at the central
area of the boxes; thus, the distance could represent the mean
depth of the area of the wall.

Fig. 12. Qualitative examples of depth map quality improvement
through calibration. The first column images are color images; the sec-
ond column images are depth maps obtained by misaligned images; the
third and the fourth column show depth maps obtained by images rec-
tified based on the proposed self-calibration and Zhang’s calibration.

Fig. 13. Depth precision experiment setup. The VIAD and a laser
ranger with an accuracy of �1.5 mm were parallelly fixed on a move-
able tripod. The distance measured by a laser ranger was regarded as
the ground truth to evaluate the precision of depth maps.

Fig. 14. Four samples of the left images of acquired image pairs.
The distances from the wall to the VIAD are 1.066, 6.082,
12.104, and 18.110 m, respectively.
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For every measurement, the three misaligned image pairs
were rectified and matched to obtain depth maps as in
Section 4.C. To reduce the influence of noise, we applied a
median filter to the sample box area of depth maps and took
the average value of the sample boxes in the three depth maps to
be the final measurement result.

The result of the precision experiment is shown in Fig. 15.
The abscissa is ground truth obtained by the laser ranger, and
error ratios in the figure are all calculated through dividing the
measurement value by ground truth. In Fig. 11, the unrectified
curve shows that Ed is larger than 100% when the disparity is
less than 4 pixels, which is about 10 m in distance. In Fig. 15,
the orange curve is the depth error ratio of mismatched image
pairs, which has been over 100% at the distance of 9 m, illus-
trating that the experiment results are consistent with the der-
ivation results. Because of the large d�Δv�, as shown in Fig. 11,
the depth maps of unrectified images become too sparse to be
measured at a distance over 11 m, as shown in Fig. 15. While
the green curve is the depth error ratio of image pairs rectified
by the mean results of self-calibration, whose maximum error is
only 25.2%, it is much lower than the unrectified one. The red
curve is the depth error ratio of image pairs rectified by the
mean results of Zhang’s calibration. It can be easily seen that
the green curve is only a little higher than the red curve, in-
dicating that the accuracy of the proposed self-calibration is
quite close to Zhang’s calibration.

The performances of each self-calibration and Zhang’s cal-
ibration are shown in the dark green and dark red regions. More
specifically, we rectified the images and calculated the depth
error ratio based on seven times self-calibration and obtained
seven curves, respectively, and the region was drawn by the
highest and the lowest ones. Therefore, this region shows the
variation range in the accuracy of the depth measure of one
single calibration result. The upper boundary of the dark green
region corresponds to the worst performance of the rectification
in seven times self-calibration, but it still greatly improved the
depth accuracy. This illustrates that, once the stereo camera is
misaligned, it can be rectified to work normally even with the
worst one single time of self-calibration. Moreover, the dark
green and dark red regions are highly overlapped, further

verifying that the performances of our self-calibration and
Zhang’s calibration methods are close.

E. Key Points Collection Strategies Comparison
To demonstrate the effectiveness of the proposed quadric dis-
tribution strategy, different kinds of key points collection strat-
egies are evaluated on the same image pairs. In Fig. 16, four
strategies are shown. Specifically, the strategy used in Fig. 16(c)
is simple: collecting key point pairs until there are 2000 of
them, so that the key points distribution is totally random.
Figure 16(d) shows all of the key points collected during
one calibration, that is, the quadric distribution is to select
some key points pairs from them.

The RMSEs of self-calibration results based on four distri-
bution strategies are shown in the Table 3. For the nondistri-
bution strategy, the distribution of key points is completely
random, and key points may gather around the corners, as
shown in Fig. 16(c), resulting in huge RMSEs, as shown in
the third row of Table 3. Simply increasing the key point
amount leads to a better result, but the improvement is quite
limited. In Fig. 16(d), there are more than 30,000 key points
collected by the nondistribution strategy, 15 times more than
that of others. However, the calibration result shown in the last
row of Table 3 is much worse than the results in the first two
rows. Furthermore, once the environment of self-calibration is
more adverse, the nondistribution strategy may lead more key
points to gather around corners, which may result in worse per-
formance. A suitable distribution strategy ensures that key
points have a stable and symmetrical distribution pattern, as
shown in Figs. 16(a) and 16(b), leading to much better
RMSEs compared with nondistribution strategies. Compared
with even distribution, our proposed quadratic distribution
makes key points concentrate more on the center of image,

Fig. 15. Depth error ratios of depth maps obtained by misaligned
image pairs and rectified images.

Fig. 16. Samples of different key points collection strategies.
(a) Key points with quadratic distribution. (b) Key points with even
distribution. (c) Key points without distribution. (d) All of the key
points collected in a single time calibration.

Table 3. RMSE of Different Key Point Collection
Strategies

Rotation/mrad Translation/mm

Yaw Pitch Roll Mean tx ty tz Mean

QDa 0.36 0.83 0.80 0.66 0.10 0.42 2.74 1.09
EDb 0.33 1.52 1.42 1.09 0.49 1.55 6.62 2.89
NDc 1.12 4.99 2.99 3.03 4.24 2.94 17.09 8.09
APd 0.51 2.76 1.57 1.61 0.85 1.15 8.81 3.60

aQD: Quadric Distribution.
bED: Even Distribution.
cND: Nondistribution.
dAP: All Points.
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reducing the influence of distortion. Thus, a higher accuracy is
achieved.

5. CONCLUSION

In this paper, we present an unconstrained self-calibration
method for the stereo camera in VIADs based on epipolar con-
straint. This method entails minimum participation of the user
and minimum requirement on environments but achieves high
precision and robustness. In this method, image pairs are ac-
quired arbitrarily. The key point collection mechanisms, in-
cluding blurred image removal, valid-box based mismatched
key points removal and quadric-distribution-based key points
selection, are the keys to achieve few constraints and high
accuracy at the same time. As the experiments and field tests
illustrate, the proposed method achieves an accuracy of
0.83 mrad error on rotation and 0.42 mm on translation vector.
The accuracy is comparable with the calibration-pattern-based
method such as Zhang’s method. Based on the proposed ap-
proach, the reliability, density, and precision of depth maps
are ensured, enhancing the safety and robustness of navigation
assistance system with the VIAD.

In the future, we aim to apply the proposed self-calibration
method to the multicamera and multimodal systems, such as
the multistereo camera system capturing the depth maps within
the 360° field of view the visual system with polarization cam-
eras or RGB-IR cameras.
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