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The introduction of RGB-Depth (RGB-D) sensors harbors a revolutionary power in the field of navigational assistance 
for the visually impaired. However, RGB-D sensors are limited by a minimum detectable distance of about 800mm. 
This paper proposes an effective approach to decrease the minimum range for navigational assistance based on a 
RGB-D sensor of RealSense R200. A large-scale stereo matching between two IR images and a cross-modal stereo 
matching between one IR image and RGB image are incorporated for short-range depth acquisition. The minimum 
range reduction is critical not only for avoiding obstacles up close, but also in the enhancement of traversability 
awareness. Overall, the minimum detectable distance of RealSense is reduced from 650mm to 60mm with qualified 
accuracy. A traversable line is created to feedback visually impaired individuals through stereo sound. The approach 
is proved to be with usefulness and reliability by a comprehensive set of experiments and field tests in real-world 
scenarios involving real visually impaired participants. 

OCIS codes: (100.6890) Three-dimensional image processing; (130.6100) Sensors; (150.6044) Smart cameras.  
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1. Introduction 
According to World Health Organization, 253 million people are 
estimated to be visually impaired and 36 million are blind in the world 
[1]. Short-range obstacle avoidance and traversability awareness are 
two fundamental topics in the research area of navigational assistance 
for the visually impaired [2-10], as well as mobile robotics [11-14], 
unmanned driving [15-18], autonomous agriculture [19-20] and 
augmented reality [21-22]. 

RGB-Depth (RGB-D) sensors, which deliver RGB streams together 
with depth information, are becoming increasingly popular for these 
tasks. The main reason is that ranging technique with RGB-D sensors 
provides good portability, functional diversity and cost effectiveness. 
However, typical RGB-D sensors, including light-coding sensors and 
stereo cameras all have a minimum range to output valid depth value. 

Light-coding sensors, such as PrimeSense, Microsoft Kinect, Asus 
Xtion Pro as well as Mantis Vision MV4D, consist of an IR laser projector 
which emits structured near-IR patterns of speckles into the scene to 
encode objects and then an IR image sensor captures the speckles [23]. 
The distortions of speckles are deciphered and the depth map is 
generated through triangulating algorithms. However, short-range 
speckles are hard to identify due to over-exposure in IR images, which 
means the reflected structured light pattern is sufficiently bright to 
saturate the image sensor. As a result, these light-coding sensors leave 
out short-range speckles which restrict the minimum range of detection, 
i.e. about 800mm in the case of Microsoft Kinect and Asus Xtion [24-25]. 

Stereo cameras, such as PointGrey Bumblebee, ZED and DUO, 
estimate depth map through stereo matching of images from two or 
more lenses. Points on one image are correlated to another image and 
depth is calculated via disparity, which is the shift between a point on 
one image and another image. The minimum range of stereo camera is 
determined by the overlapping field view of both cameras and the 
search range of disparity in corresponding algorithms [26]. For example, 
the minimum depth range of ZED stereo camera is 1000mm [9]. 

 

Fig. 1.  The RGB-D sensor of RealSense R200, which is a good option for 
navigational assistance from miniaturization perspective. 

RealSense R200 [27] is a RGB-D sensor that exploits a combination of 
active speckles projecting and passive stereo triangulating to derive 
disparity maps, and subsequently depth images, which is referred to as 
active stereo [28]. As shown in Fig. 1, RealSense R200 consists of an IR 
laser projector, a RGB camera, two IR cameras and an image processor. 
IR laser projector emits static non-visible near-IR speckles into the scene 
which is then attained by the left and right IR cameras. A depth map is 
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generated by the image processor through embedded stereo matching 
algorithm. The combination endows RealSense R200 the ability to work 
under both indoor and outdoor circumstances. In texture-less indoor 
environment, the projected patterns enrich textures on simple 
scenarios such as white wall. In sunny outdoor environment, although 
projected patterns are submerged by natural light, near-IR component 
of sunlight shines on the scene to form well-textured IR images. With the 
contribution of abundant textures to robust stereo matching, RealSense 
R200 is quite suitable for assisting the visually impaired thanks to its 
small size and environmental adaptability. 

However, the combination brings about range restriction originated 
from both active speckles projecting and passive stereo matching. At 
close range, the overexposed regions in IR image lack in sufficient 
textures for stereo matching. Additionally, the narrow overlapping field 
of view leads to the obvious close blind area given the baseline distance 
of about 70mm. According to the technique overview [27], RealSense 
uses a Census cost function and performs a limited disparity search to 
compare left and right images. All depth points generated by the 
hardware correlation engines are high-quality photometric matches 
between the left-right stereo pairs. This allows the algorithm to scale 
well to noisy images. However, due to the fixed disparity search range, 
the overexpose and the narrow overlapping field of view, the embedded 
algorithm fails to acquire close-range depth information and RealSense 
R200 only outputs depth value greater than the threshold of 650mm. 

In indoor environment, the normal operating distance ranges from 
650mm to 2100mm in VGA resolution [29] while the sensor is able to 
deliver larger depth values outdoors, depending on illumination and 
textured conditions. If an object is within the detection range of 650mm, 
there is a black hole in the depth image as shown in Fig. 2(a)(b), and 
pixels in the black hole have no valid depth. In the case of navigational 
assistance, obstacles in close blind area cannot be perceived well and 
detected easily. As a result, sight impaired individuals are frequently left 
vulnerable in dynamic environment suffering from finding walkable 
directions as shown in Fig. 2(c)(d). Thereby, minimum range reduction 
for obstacle avoidance and traversability awareness is clearly desirable. 

 

Fig. 2. (a)(b) The color image and depth image acquired with RealSense 
R200, the hand is within minimum range of detection so as to form black 
holes and mismatching pixels in depth image; (c)(d) Users who 
encounter obstacles in close blind area when wearing an assisting 
prototype. 

2. Related work 
In order to expand the range of RGB-D sensors, researchers have 
investigated the possibilities of many approaches for short-range depth 
acquisition. These approaches fall into several dominating categories of 
techniques: optics modification, deployment of multiple RGB-D sensors, 
information fusion as well as 3D simultaneous localization and mapping 
(SLAM) [30]. 

As for the modification of optics, Nyko Zoom is a commercial wide-
angle optical adaptor for Microsoft Kinect. It reduces both the minimum 
and maximum range of Kinect, but pronounced distortion in depth 
image is introduced. Draelos et al. [12, 25] compensated the lens-
introduced distortion through a depth calibration procedure and 
decreased the minimum range of Kinect by approximately 30%. Tomari 
et al. [31] addressed the distortion issue with a two-staged strategy by 
correcting pixel locations with an inverse radial distortion model and 

rectifying depth values with a neural network filter based on laser-
assisted training. 

Multiple RGB-D sensors are integrated in some systems to obtain a 
wilder field of view and decrease the minimum detection range. 
However, multiple light-coding sensors with overlapping views 
produce interference effects from overlapping speckles. Alhwarin et al. 
[24] used two IR images of two light-coding sensors as a stereo pair to 
generate a depth map. By combining active stereo depth and original 
depth, this method sidesteps the interference problem and decreased 
the minimum distance of Asus Xtion from 800mm to 500mm at a 
baseline of 45mm. Vorapatratorn et al. [6] performed a similar 
combination by utilizing two light-coding sensors for segmenting 
obstacles from the background. Nevertheless, the working distances 
were not reported. Shröder et al. [32] used a spinning shutter to block 
the IR emitter on each Kinect in turn to mitigate the interference. The 
framerate decreases as laser speckles from each light-coding sensor 
cannot access the scene all the time. While inspiring, appending a 
spinning shutter is unsuitable for a wearable assistance system with the 
additional weight. Maimone and Fuchs [33] applied a small vibration 
with a simple motor to a subset of light-coding sensors to alleviate the 
interference, which contributes the burring in RGB images as the color 
camera works in rolling shutter mode and poses challenges for 
detection algorithms to accurately locate obstacles with the continuous 
movement of sensors. 

Information fusion against the range limitation is adopted by some 
researchers through combining RGB image with depth image or IR 
image. In order to provide the visually impaired with obstacle-free paths, 
Aladren et al. [5] firstly detects ground with RANdom Sample 
Consensus (RANSAC) [34], then extends the depth based ground 
segmentation with RGB image. This method is quite suitable to expand 
detection result to longer range, but not robust enough to acquire short-
range information and the algorithm with unpromising framerate fails 
to provide upper-level assistance at normal walking speed. There are 
researchers complemented the depth image of RGB-D sensor through 
cross-modal stereo matching between RGB and IR image [35-37]. The 
minimum range is reduced, since a wide overlapping field could be 
obtained due to the short baseline of IR camera and RGB camera in a 
RGB-D sensor. Although related, these methods focus more on the 
depth restoration of transparent and specular surfaces, and attach less 
importance to depth accuracy at close range. 

In terms of 3D simultaneous localization and mapping (SLAM), the 
based solution could build a vicinity map. In this fashion, instead of 
original depth image, short-range information is acquired through the 
vicinity map. Lee and Medioni [2, 38] adopted a metric-topological 
SLAM approach to provide the visually impaired with 3D traversability 
on the map. This method achieves real-time processing speed and 
improves the mobility performance, but still suffers from the loss of 
short-range depth when spinning too fast or working in crowded real-
world environments with many independently moving objects. 

Although a number of related work have addressed the problem, 
they do not decrease the minimum range to a large extent or cause 
intolerable side-effects in navigational assistance. In this paper, we focus 
on the short-range depth imaging to enhance the assistance in terms of 
obstacle avoidance and traversability awareness for visually impaired 
individuals. A commercial off-the-shelf RGB-D sensor in RealSense 
R200 is used without modifying hardware nor requiring any additional 
cameras. The minimum range reduction scheme is the combination of a 
large-scale stereo matching algorithm between two IR images as well as 
a cross-modal stereo matching algorithm between RGB image and IR 
image. To feedback visually impaired individuals through depth-sound 
mapping, a traversable line is generated after minimum range reduction. 
The approach has been integrated in a wearable prototype and tested 
in real-world scenarios with real visually impaired volunteers. 

(a) (b) (c) (d)



We have already presented some preliminary studies related to blind 
assistance in [7-10]. Detection algorithms of local ground plane and 
long-range traversable area were developed in [7-9] while [9] also 
addressed the avoidance of water hazards. In [10], we have made the 
first attempt to decrease the minimum range of RGB-D sensor, namely 
from 650mm to 165mm. In this paper, we considerably extend 
previously established proof-of-concepts, where the scheme to largely 
reduce the minimum range is explained. In addition, we include novel 
contributions and results tested with real visually impaired people to 
validate the effectiveness of our solution: 

(1) A minimum range reduction approach for the RGB-D sensor in 
RealSense R200, namely from 650mm to 60mm with qualified accuracy. 

(2) A depth perception scheme with the combination of large-scale 
stereo matching algorithm and cross-modal stereo matching algorithm. 

(3) A navigational assistance framework on a wearable prototype for 
visually impaired individuals. 

This remainder of this paper is organized as follows. In Section 3, the 
proposed approach is presented in detail. Section 4 describes the 
experiments in terms of accuracy test, detection results and field tests. 
Section 5 are the conclusions and outlooks to future work. 

3. Approach 

In this section, the approach to reduce the minimum range of navigation 
assistance is elaborated in detail. As the pipeline of the approach shown 
in Fig. 3, color image, original depth image and IR image pair are 
acquired with the RGB-D sensor, while we implement our algorithm to 
obtain a minimum range decreased depth image and use the depth 
image to provide audio feedback to visually impaired people through 
the created traversable line. The minimum range reduction serves as a 
crucial step to triangulate the large-scale stereo pair and cross-modal 
stereo pair. In this contribution, the minimum depth range of RGB-D 
sensor in RealSense R200 is firstly decreased from 650mm to 160mm 
by large scale stereo matching, and the cross-modal stereo matching is 
the key enabler to further decrease the minimum detectable range to 
60mm, which are described in the subsections. 

 

Fig. 3. The pipeline of the presented approach. 

A. Large-scale stereo matching 

The minimum range of original depth image is around 650mm and 
there are many holes, noises and mismatched pixels as shown in Fig. 
4(a)(b). However, the original depth image is delivered by the stereo 
matching algorithm fixed in the RealSense processor which is unable to 
be altered. Still, the embedded algorithm is based on local 
correspondences, which prevents the sensor from delivering dense 
original depth map in texture-less scenarios, especially short-range 

regions as shown in Fig. 4(a)(b). In addition, parameters are preset with 
the algorithm, such as the matching score and texture threshold. 

 

Fig. 4. (a) Color image; (b) Original depth image; (c) Large-scale matched 
depth image. 

Comparatively, IR images from the RealSense are large-scale 
matched in our work. To yield a minimum range decreased depth map 
with calibrated IR images, not only the disparity search range is 
expanded in the algorithm, namely from 64 to 255, original efficient 
depth pixels are also included in the design of a variant version of 
efficient large-scale stereo matching algorithm [39]. Here, supported 
pixels are denoted as pixels which can be robustly matched due to their 
textures and uniqueness, and these pixels are obtained using Sobel 
masks with the fixed size of 3 by 3 pixels and a large-scale disparity 
search range to perform stereo matching. In our implementation, 
instead of uniformly selecting support points, we perform several 
simple and effective steps to determine the support points. Beyond 
Sobel filters responses, which are insufficient for stereo matching, 
original depth image pixels are added to the support pixels. In addition, 
a multi-block-matching principle [40] is employed to obtain more 
robust and sufficient support matches from real-world textures even 
with short-range overexposed regions in the IR pair as shown in Fig. 5. 
Given the resolution of IR images 628 by 468, the appropriate block 
sizes found are 41 by 1, 1 by 41, 9 by 9 and 3 by 3. After that, following 
[39], the approach estimates the depth map by forming triangulation on 
a set of support pixels and interpolating disparities. As shown in Fig. 
4(b)(c) and Fig. 5(d)(e), the large-scale matched depth image is much 
denser than the original depth map in close range. 

 

Fig. 5. (a)(b) Left and right IR image pair; (c) Color image; (d) Original 
depth image; (e) Large-scale matched depth image. 

B. Cross-modal stereo matching 

In order to further decrease the minimum range to a great extent, we 
use the RGB camera and the IR camera close to the RGB camera to 
establish a stereo camera system whose baseline distance is short 
enough (11.7mm in the case of RealSense R200) to ensure the detection 
of objects in close range. 

As a prerequisite step of cross-modal matching, the RGB image is 
rectified using parameters from RealSense calibration software [41]. 
Subsequently, instead of searching for the optimal weights to convert 
the RGB image into a fake IR image for IR stereo matching as proposed 
in [35-36], the idea from vector quantified imaging coding [42] is 
introduced to reconstruct the fake IR image. For obstacle avoidance, 
note that this reconstruction assumes that particularly close objects 
cover quite a large area in the images. Following the assumption, we 
adequately considered the real-time circumstance by reconstructing 
the fake IR image based on K-means clustering algorithm to improve the 
suitability in different environments. The flow chart of the 
reconstruction is fully depicted in Fig. 6 where we aim to cluster the 
color image in RGB space. For pixels of color image in each cluster, the 
grayscale in the reconstructed fake IR image is assigned with the same 
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value as the grayscale of the pixel corresponding to the initial clustering 
center in IR image. 

 

Fig. 6. The flow chart of the reconstruction of color image into a fake IR 
image based on K-means clustering algorithm. 

The initial clustering center pixels contain two types: pixels at fixed 
coordinates and pixels which are randomly elected. Given the resolution 
of the rectified color image 628 by 468, we collected M  equally 
distributed fixed pixels and randomly elected N  pixels at different 

coordinates. The (R, G, B) values of the selected pixels are set as the 
initial clustering centers. In this way, we obtain K  clustering centers as 
calculated in Eq. (1) where M  is empirically set to 35 to ensure a basic 
number of grayscale levels for cross-modal stereo matching. 
Comparably, N  could be specifically set and equals to 15 generally in 

the case of RealSense R200 to leverage a rational trade-off between 
efficiency and matching capacity. 

.K M N     (1) 

In the IR image with the resolution 628 by 468, grayscale values of 
the pixels at the corresponding coordinates of the selected clustering 
center pixels in color image are recorded. Thereupon, K-means 
clustering is implemented in RGB space for all pixels in the color image. 
To speed up real-time assistance, only one iteration is executed instead 
of using the convergence of objective function in K-means as the 
stopping criterion. After the clustering, each pixel in the color image 
belongs to a cluster. For pixels in each cluster, the grayscale values in the 
fake IR image are assigned with the recorded grayscale values in IR 
image. In this light, the reconstructed fake IR image shares the same data 
domain of the IR image and has K  levels of grayscale as shown in Fig. 7. 

 

Fig. 7. (a) Color image; (b) IR image; (c) The reconstructed fake IR image. 

As discussed in Section 1, the over-exposed or over-dense speckles 
occurring in IR images is one of the main reasons why light-coding 

sensors and active stereo type of RGB-D sensor RealSense could not 
calculate the depth of short-range objects. In respond to this issue, we 
proposed to exploit the over-exposed regions of IR speckles in the IR 
image and the fake IR image as a stereo pair to generate short-range 
depth. As these regions tend to be edge-less with over-dense speckles, 
they could be easily extracted with a typical Canny edge detector. After 
that, over-dense regions correspond to short-range objects. These 
regions in the IR image and the fake IR image reconstructed from the 
rectified color image are adopted as an IR stereo pair for disparity 
calculation through a block matching stereo algorithm. This algorithm is 
previously presented in [10], which is based on local correspondences 
to acquire an edge depth image. In this regard, it allows to generate early 
warning of extremely close obstacles in real time by using this edge 
depth image. As shown in Fig. 8(b), the large-scale depth image is 
combined with the cross-modal depth image to form the synthetic 
depth image, which comprises the edge depth regions acquired with 
cross-modal stereo matching. The synthetic depth image is generated 
by replacing depth value of invalid pixels in large-scale depth image with 
the corresponding one from the cross-modal depth image as calculated 
in Eq. (2). As for each pixel, the depth equals large-scale depth, if the 

Bool  of the pixel equals to 1, which means the depth of the pixel in the 

large-scale depth image is valid. Otherwise, the depth equals cross-
modal depth. 

.synthetic large-scale cross-modald d Bool d (1- Bool)     (2) 

 

Fig. 8. (a) Color image; (b) Synthetic depth image; (c) Original depth 
image without close-range depth information. 

C. Traversability awareness through stereo sound feedback 

After large-scale stereo matching and cross-modal stereo matching to 
reduce the minimum range of the RGB-D sensor, a traversable line to 
represent the traversable distances in different directions is proposed. 
For producing the stereo sound and yielding a complete line, a guided 
filter introduced in a previous work [7] is used in advance to refine the 
depth map in terms of hole-filling and density-enhancing. Subsequently, 
we first separate feasible ground area from hazardous obstacles with 
the method proposed in our previous work [5], then locate the closest 

valid pixel with the minimum depth value mZ  in each direction. In this 

manner, the traversable line constituted by the minimum depth values 
is obtained as shown in Fig. 9. Additionally, we implemented an obstacle 
detection method to warn against ultra-close hazards based on Mean-
Shift algorithm [43] to cluster depth pixels which tend to be congregated 
together. As a result, the audio interface generates a prompt to help 
visually impaired people to be aware of the close hazards after the 
obstacle segmentation. 

 

Fig. 9. (a) Color image; (b) Original depth image; (c) Depth image with 
minimum range reduction and guided enhancement; (d) Traversable 
line. 
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In addition, this paper uses a variant of non-semantic audio interface 
with respect to previous work [9]. To feedback to visually impaired 
people, we perform depth-sound mapping by using the traversable line 
which signifies the traversability in different directions. As shown in Fig. 
10, the directions of traversable distances are differentiated not only by 
sound source locations in virtual 3D space and the directions of stereo 
sound, but also by the musical instruments, whose timbre differs from 
each other. The generation of the stereo sound follows rules below to 
guide and attract visually impaired individuals to take the prioritized 
direction to navigate the traversable path and detour around hazardous 
obstacles: 

(1) Divide the traversable line into five sections which correspond to 
the five different musical instruments. 

(2) The horizontal field view of the RGB-D sensor is 57.1°, so each 
musical instrument corresponds to the traversable line with a range of 
11.42°. 

(3) Each direction of traversable distance is represented by a musical 
instrument in virtual 3D space. 

(4) For each musical instrument, the bigger the sum of height in the 
corresponding section of the traversable line, the greater the sound 
from the instrument. 

 

Fig. 10. Stereo sound feedback to signify the traversability in different 
directions to visually impaired individuals via the sonification of five 
instruments including trumpet, piano, gong, violin and xylophone in 3D 
space. 

4. Experiments 

The presented approach has been evaluated with several experiments 
including ranging accuracy test, obstacle detection, traversability 
awareness as well as field tests. The accuracy test is performed to 
analyze the ranging accuracy of large-scale and cross-modal stereo 
matching and study whether the requirement for accuracy of 
navigational assistance has been met. Obstacle detection and 
traversability awareness are performed to study the effectiveness of 
detecting various obstacles and determining traversable directions as 
well as the running time of the algorithm. Field tests are designed to 
check whether the presented approach effectively assists navigation. 

A. Accuracy test 

The accuracy test is performed separately in terms of original depth 
ranging, large-scale depth ranging and cross-modal depth ranging and 
the results are shown in Fig. 11. The relative accuracy is calculated in 
comparison with the result of the laser ranging, which is set as the true 
value and the accuracy of the laser ranger is 0.001m. In terms of the 
original depth ranging whose minimum detection distance is around 
650mm, the relative accuracy is less than 1.2%, and the slope coefficient 

of the linear fit equals to 1.0003 with the fitting goodness 2R  equaling 
to 0.9999. As for the large-scale depth ranging whose minimum 
distance has been decreased to around 160mm, the relative accuracy is 

less than 1.1%, while the slope coefficient equals to 1.0006 with 2R  

close to 1. It could be seen that the large-scale depth ranges not only 
closer but also slightly more accurate than the original depth image. 
Meanwhile, the cross-modal depth ranges from 60mm to 200mm, 

which is very close, and the slope coefficient equals to 0.9992 with 2R  
equaling to 0.9939, and the relative accuracy is less than 4.8%. 

Generally, the ranging deviation increases as distance increases in 

stereo systems. In the ranging formula Eq. (3), depth d  is calculated 

where T  is the baseline distance and   is the disparity value 
generated with stereo matching. From Eq. (3), we deduce Eq. (4)(5). In 

a passive stereo system, the errors   in disparity space are usually 

constant which stem from imaging properties and the quality of the 
matching algorithm. For active stereo, the condition holds until imaging 
noise overwhelms projector intensity. As the metric we use in the 
accuracy test is to record depth at which a perpendicular white wall 
returns greater than 95% of its measurements in the center of the field 
of view, so the condition of disparity error constancy is satisfied. Simple 
manipulations of Eq. (5) gives Eq. (6), which means the relative accuracy 

%  is proportional to the depth d . 
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However, the relative accuracy of large-scale stereo matching is 
better than cross-modal stereo matching which has a shorter minimum 
detectable distance. This is because the results are acquired through 
two stereo systems with different baselines. The large-scale stereo 
matching is carried out between two original IR images and the cross-
modal stereo matching is carried out between one IR image and the fake 
IR image reconstructed from the rectified RGB image. For this reason, 
the shorter baseline gives rise to the relative error. In addition, textures 
which benefit stereo matching are poorer in closer range due to the 
overexposure in active stereo type of RGB-D sensor, thus the errors 

  in disparity space could not be assumed equivalent in the two 

stereo systems. To briefly summarize, the ranging error of the range 
within 3m is lower than 1.0cm and lower than 3.2cm within 5m. 
Apparently, the accuracy satisfies the requirement of navigational 
assistance for the visually impaired in terms of obstacle avoidance and 
traversability awareness. 



 

 

 

Fig. 11. (a) Original depth ranging (minimum detectable distance 
650mm) in comparison with laser ranging; (b) Large-scale depth 
ranging (minimum detectable distance 160mm) in comparison with 
laser ranging; (c) Cross-modal depth ranging (minimum detectable 
distance 60mm) in comparison with laser ranging. 

B. Obstacle detection and traversability determination 

The effectivity of the approach to reduce minimum detectable distance 
is evaluated for detecting obstacles. Fig. 12 shows examples of depth 
maps and detection results using the Mean-Shift segmentation 
algorithm, where the second column and the third column show the 
original depth images and the depth images with minimum range 
reduction respectively. Based on RealSense depth estimation, we 
observe that nearly all short-range objects are either missed or filled 
with mismatched pixels and noises in the original depth image. In 
comparison, the depth images with minimum range reduction appear 

to deliver dense depth information of the close-range objects. Thereby, 
the Mean-Shift based segmentation algorithm is able to detect close-
range obstacles as shown in the fourth column of Fig. 12. As a result, the 
minimum range reduction is quite effective to enhance the obstacle 
avoidance for the visually impaired in their daily life. 

 

Fig. 12. Obstacle detection results using depth images with minimum 
range reduction. First column: color images; second column: original 
depth images; third column: depth images with minimum range 
reduction; fourth column: obstacle segmentation results with the 
average depth marked in scale of centimeter. 

As the minimum range of the depth perception with the RGB-D 
sensor of RealSense has been decreased to around 60mm, different 
obstacles at different distances ranging from 60mm to more than 
5000mm can be detected. Fig. 12 and Fig. 13 exhibits a wide set of 
qualitative examples, where the detection of obstacles of different 
materials, textures and distances are addressed. Here, we produce a 
bounding window to present the segmentation results of close-range 
objects in color images. Additionally, the average depth of the 2D 
bounding segmented object is marked in scale of centimeter. Based on 
our minimum range reduction scheme, common objects within the 
reach of visually impaired people are correctly detected thanks to the 
range expansion, including electric fan, semitransparent water bottle, 
texture-less boxes, metallic surface, matte surface, white cane, human 
face, hand, arm, mobile phone and loudspeaker. Moreover, obstacles of 
different sizes and locations on the ground which would impede the 
navigation of visually impaired people are also correctly detected, 
including chairs, garbage cans, human body, cart, cabinet, air 
conditioner, football, traffic cone and umbrella. 
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Fig. 13. Obstacle detection results. 

As far as the traversability awareness is concerned, we found out that 
the depth map with minimum range reduction not only benefits the 
early warning of close obstacles but also enables a complete and smooth 
traversable line compared with the result generating from the original 
depth map as shown in Fig. 14, which is full of noises and black holes 
within close range. As a result, the stereo sound feedback is comparably 
more stable and would not confuse visually impaired people. The total 
computing time of a single frame on a portable processor with a 2.4GHz 
CPU is 194ms, which leads to a feasible 5 FPS framerate for obstacle 
avoidance and traversable direction determination. 

 

Fig. 14. Traversability awareness and the stereo sound interface 
generated with/without minimum range reduction. First column: color 
images; second column: original depth images; third column: 
traversable lines generated with original depth image; fourth column: 
depth images with minimum range reduction and guided enhancement; 
fifth column: traversable lines generated with minimum range 
decreased depth images. 

C. Field test 

Two closed-loop field tests were conducted in an office and a corridor 
respectively. In these field tests, the presented approach has been 
integrated in an assisting system. As shown in Fig. 15, the wearable 
prototype is composed of a RGB-D sensor of RealSense R200 to capture 
three dimensional information of the environment, a bone conduction 
headset to transfer stereo sound feedback to visually impaired 
individuals, a pair of environmentally friendly resin lenses, a USB3.0 
high frequency communication cable to transmit data and a portable 
processor. The assisting prototype is not only wearable but also ears-
free and hands-free, because the bone conducting stereo sound 
feedback will not prevent the ears of visually impaired people from 
hearing environmental sounds, and the processor could be carried in 
pockets (Fig. 15(c)) instead of being held in hand (Fig. 15(b)). 

 

Fig. 15. (a) The wearable assisting prototype including the RGB-D 
sensor of RealSense, a bone conduction headset and a portable 
processor; (b) The user wears the prototype and holds the processor; (c) 
The user wears the prototype with the processor in the pocket. 

Twenty-one visually impaired volunteers participated in the field test 
in an office as shown in Fig. 16.  In this field test, the navigation assistance 
performance was compared with/without the minimum range 
reduction of the RGB-D sensor.  As a comparison task, each one of them 
first completed with short-range depth information complemented. 
After that, they were asked to finish the task without close-range depth 
information, which means the obstacle avoidance and traversability 
awareness were operated with original depth output from RealSense. 

During this assistance study, participants would learn the stereo 
sound feedback in the first place. The working pattern of the system and 
signals from the bone conduction headset were introduced. Each 
participant had five minutes to learn, adapt to the audio interface, and 
wander around casually. After that, participants were asked to traverse 
through obstacles without collisions and walk around the office, finally 
return to the start region where the Fig. 16 was taken. All visually 
impaired participants completed the test. The number of collisions and 
time to complete the test were recorded. Collisions include collisions 
with obstacles such as desks, foosball table, chairs, walls and so on. The 
timer started when a participant was sent to the start region and 
stopped when the participant completed a single test.  

 

Fig. 16. Field test scenario in an office. 

As shown in Fig. 17, participant needed an average time of 130.81s to 
finish a single test to walk around the office hearing the sound to detour 
around close obstacles and find the traversable directions with 
minimum range reduction. Each one collided into obstacles 0.95 times 
on average. In comparison, when finishing the task without minimum 
range reduction, the mean collision times and traversing time were 1.86 
and 136.67s respectively. It is convinced that the minimum range 
reduction is extremely important for safety-critical blind assistance as 
the collision times were nearly 2 times of the number in the condition 
without close-range information. In addition, average traversing time 
were slightly lower with short-range information owing to the 
consistent feedback enabled by the denser depth image. It can be ruled 
out the possibility that decrease of the number of collisions is due to 
variation of familiarity of the sound feedback or the system. Because the 
test was performed with minimum range reduction first, it would help 

(a) (b) (c)



improve rather than weaken the performance of the navigation without 
short-range information, if they were more familiar or better trained 
with the device afterwards. 

Intriguingly, most of the collisions occurred when the user had 
already bypassed the obstacle but still scratched the sides. It is worth 
mentioning that the participant who collided with obstacles most times 
misunderstood the directions of the stereo sound, which guides the user 
to take prioritized direction to walk instead of notifying the directions of 
obstacles. Thereby, if his data is pruned, each one collided into obstacles 
0.8 times on average with the full depth information. Altogether, eleven 
participants, more than half of all volunteers, never collided into 
obstacles when performed the navigation task using our assistive 
approach. 

 

 

Fig. 17. Experiment data sorted in descending orders of the traversing 
time. (a) The collision times of visually impaired volunteers; (b) The 
traversing time of visually impaired volunteers. 

To analyze the major concern of the navigation performance for long-
range obstacle avoidance task, another field test was conducted in a 
corridor about 2.5m wide and 38m deep with many umbrellas popped 
as shown in Fig. 18. An example of the detection of umbrella is evaluated 
in Fig. 13. This test involved ten visually impaired individuals who have 
also experienced the learning stage to get adapted to the stereo sound 
feedback in the beginning. Afterwards, they were asked to walk 
collision-free within the environment. As shown in Fig. 19, all 
participants finished the test of traversing from one end of the narrow 
corridor to the other even with many low obstacles on the ground. Each 
visually impaired individual spent an average time of 163.6s to finish the 
route and collided into obstacles 1.2 times on average. The number of 
collisions were few when the participants walked through the narrow 

passage with many disorganized umbrellas on the floor. It can be 
proved convincingly that the traversability awareness is endowed with 
usefulness and improved reliability with minimum range reduction, 
which helps visually impaired individuals to avoid close-range obstacles 
and determine traversable directions. In other word, the safety and 
robustness are ensured on navigation. 

 

Fig. 18. Field test scenario in a corridor. 

 

 

Fig. 19. Experiment data sorted in descending orders of the traversing 
time. (a) The collision times of visually impaired volunteers; (b) The 
traversing time of visually impaired volunteers. 

4. Conclusion 

RGB-D sensors are widely applied in navigational assistance for visually 
impaired people. However, most solutions, such as traversable area 
detection and obstacle avoidance, suffer from the limitations imposed 
by RGB-D ranging in terms of active speckles projecting or passive 
stereo matching. 

In this paper, an effective approach to decrease the minimum range 
of a RGB-D sensor of RealSense R200, which is a hybrid type of RGB-D 
sensor to enable environmental compatibility and maintain 
miniaturization advantage. Overall, the minimum depth range of 
RealSense has been decreased from 650mm to 60mm with qualified 
accuracy. A traversable line is created to feedback visually impaired 
individuals through stereo sound to detour around close obstacles and 
determine traversable directions. 
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Accuracy test, obstacle detection, traversability awareness and field 
tests are described in detail which prove the approach to be effective 
and reliable. 

In the future, we aim to incessantly enhance our navigational 
assistance approach for the visually impaired. We are looking forward 
to not only decreasing the minimum detection range, but also 
expanding the maximum range and amplifying the field of view of the 
RGB-D sensor. Additionally, a pRGB-D-SS framework which 
incorporates polarization imaging and real-time semantic 
segmentation would be interesting and useful to acquire 
complementary information and cover the perception needs of 
navigational assistance in a unified way. 
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