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Abstract—Assistive technologies aim at enhancing personal 

mobility of individuals with disabilities to improve their 
independence and access to social life. For the visually impaired, 
perception during navigation comprises a major ingredient of 
independent living. With the development of computer vision, it 
is possible to meet the richer needs of visually impaired people. 
However, research on navigation assistance for the visually 
impaired is still relatively unexplored when compared with the 
active progress in autonomous driving which is already in full 
swing. In respond to this issue, we aim to leverage the study of 
the Stixel-World for automotive systems and transfer it to 
develop assistive technology for visually impaired people. The 
impressive research results of deep learning also suppose benefits 
for vision-based technology. Precisely, semantic segmentation is a 
task that enables identification of different objects uniformly. 
Inspired by these observations, we design a set of wearable visual 
aids, while the core algorithm is based on the stixel 
representations for three-dimensional world combined with 
pixel-wise semantic segmentation. Predetermined conditions for 
stixels in automotive research are optimized to fit the needs of 
navigation assistance in our algorithm, along with the 
incorporation of traversability-related semantic information. We 
also propose a sound mapping scheme, so that the environmental 
awareness about geographic and semantic information are 
conveyed to the visually impaired through acoustic feedback. 

Keywords—Stixel-World; semantic segmentation; sound 
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I. INTRODUCTION  
 

As World Health Organization estimated, there are 253 
million people living with vision impairment, while 36 million 
are blind and 217 million of them have moderate to severe 
reduced vision [1]. Vision is the most important source of 
human perception of the outside world. However, because of 
the limited ability of visually impaired people to access visual 
information, their independent navigation is greatly affected. 

In recent years, a large part of researches are dedicated to 
the fields of machine vision. Visual aids based on camera 
input images emerge, but the market of vision-based 
navigation assistance for the visually impaired remains small. 
These devices usually acquire depth information, color images 
or infrared images through cameras, and distinguish the 
obstacles from the ground by the means of depth segmentation, 
edge detection or area growth, so as to guide the assistive 
navigation[2][3]. However, due to the inconsistent features 
and models, the single use of some kind of graphics 

processing method cannot provide comprehensive perception 
of the scene. What’s more, the integration of the different 
threads is often computationally intensive, and it is difficult to 
ensure real-time assistance. 

At the same time, autonomous driving attracts more 
attention with the emergence of a large number of valuable 
researches. Considering the similar needs for obstacle 
avoidance and scene understanding, the research for 
autonomous vehicles could to be leveraged to provide 
navigational assistance for the visually impaired. To overcome 
the limitation of incompatible assumptions across application 
domains, [4] clustered the normal vectors in the lower half of 
the field of view, [5] followed the Manhattan World stereo [5] 
to obtain ground-to-image transformation, while [6] integrated 
Inertial Measurement Unit (IMU) observations along with 
vision inputs in a straightforward way. In our research, 
semantic segmentation is used to realize the application of 
Stixel-World [8] in visual aids for the visually impaired, as 
shown in Fig.1. 

Stixel-World [8][9][10] marked a significant milestone for 
flexibly representing traffic environments. Obstacles and free 
space are pixel-wisely segmented, and the stixel-level 
representation could provide compact and robust 
environmental awareness with respect to the original depth 
image. The stixel computation algorithm greatly reduces the 
computation of dense depth information and meets the speed 
requirements of time-critical applications. In addition, 
sonification of stixels are inherently smoother than 
representation of pixels for sound mapping. In this regard, it’s 

 

 
Fig. 1. Our main achievements: cross-domain application of stixels. 



 

 

possible and beneficial to leverage the stixel-based techniques 
for autonomous vehicles and transfer them into assistive 
technology for the visually impaired. 

Recent advances in deep learning have achieved break-
through results in most vision-based tasks including semantic 
segmentation [10], which has grown as the key enabler to 
cover navigation-related perception tasks in a unified way. 
However, pixel-wise semantic segmentation was not usable in 
terms of speed. As presented in previous work [11][13], we 
have developed real-time semantic segmentation to assist 
visually impaired pedestrians. 

In this paper, we extend previous established proof-of-
concept to jointly infer the geometric and semantic layout of 
unknown scenes faced by visually impaired persons, which is 
similar to the semantic stixels scene model designed towards 
autonomous driving [13]. In order to convey the 
environmental information to the visually impaired, according 
to the study of human perception of sound information 
[15][15][16], we have designed a sound mapping scheme. In 
this contribution, visually impaired users are free to choose 
the assistance mode independently. One of the mode is the 
path guidance, which beeps the front obstacle to remind the 
visually impaired to avoid the hazardous obstacle, and this 
model does not contain semantic information; the other mode 
is environmental perception, while the images captured by the 
camera will be converted into sound, and the different 
categories in the scene are mapped using different musical 
tones. In both modes, distance and direction of obstacles are 
mapped by the combination of loudness tones and phase 
differences of the sound source. 

The remainder of this paper is structured as follows. In 
section II, the navigation assistance framework is elaborated 
in terms of the wearable assistance system, the semantic 
segmentation, stixel architecture and the sound interactive 
design. Section III evaluated the approach and discussed the 
real-time and real-world performance of the system. In section 
IV, relevant conclusions are drawn and future works are 
expected. 

II. SYSTEM DESIGN 

A. Wearable navigation device 
 

In this work, we choose the ZED stereo camera [18] as the 
core device for vision data acquisition. The stereo camera's 
field of view is 0-110°, and we are able to acquire both depth 
and color maps. More importantly, the camera can obtain 
accurate object depth information from 0.5m to 20m, indoors 
and outdoors. In this regard, the RGB-D sensory awareness 
could meet our requirements for the field of view and the 
dynamic range. 

How to convey the rich source of processed environmental 
information to the visually impaired? As is known to all, 
hearing is an important way for people to obtain information 
from the outside world, and it is believed in psychology that 
the information people receive from the outside world 
contains about 15% from the auditory channel. For this reason, 
auditory perception is a good visual aid to provide efficient 
feedback. Based on this knowledge, we use bone conduction 
headphones to convey the sound of image information 
mapping. This is important as visually impaired people need 
to continue hearing environmental sounds and the bone 
conducting interface allow them to hear a layer of augmented 
acoustic reality that is superimposed on the environmental 
sounds. Considering the portability and data acquisition needs, 
we design the device as head-mounted glasses [18] to acquire 
environment information and interact with visually impaired. 

As is worn by the user in Fig. 2, the device is composed of 
a pair of smart glasses and a laptop in the backpack, and the 
smart glasses are contained with a stereo camera and a pair of 
bone conduction headphones. The camera captures real-time 
RGB-D streams while the RGB images are fed to the network 
for semantic segmentation and the depth images are used to 
compute stixels. The bone conducting earphones transfer the 
detection results for terrain awareness and collision avoidance. 
We utilize a laptop with Core i5-7200U processor and a cost-
effective GPU 940MX as the computing platform, which 
could be easily carried in a backpack and is robust enough to 
operate in rough terrain. 

Fig. 2. The wearable navigation system as a pair of smart glasses consisted with a RGB-D camera, a PC in backpack and a pair of bone conduction headsets. 



 

 

B. Semantic segmentation algorithm 
Visually impaired persons often rely on tactile sense to 

perceive different objects due to their imperfections in sight. 
However, during individual navigation, they need to make use 
of external aids to perceive the environment. 

With the development of deep learning, a unified 
environmental awareness becomes possible. Semantic 
segmentation classifies a wide variety of scene classes, which 
directly leads to pixel-wise understanding. As mentioned in 
[11][13] we design the architecture according to the encoder-
decoder architecture like SegNet, ENet and ERFNet 
[19][20][21] to respond to the surges in demand. Fig. 3 
contains a depiction of the feature maps generated by each of 
the block in our architecture, from the RGB input to the pixel-
level class probabilities and final prediction [11][13]. More 
specifically, our customized architecture is built on factorized 
convolution, sequential dilation and pyramid representation, 
which learns hierarchically high-level features that allow us to 
precisely detect semantic patterns and infer dense pixel-wise 
predictions, attaining the coverage of various scene elements. 
Based on the architecture tailored for the safety-critical 
context of blind assistance, the semantic segmentation 
algorithm can distinguish people, cars, sky, roads and 
sidewalks in a unified way, while maintaining the real-time 
speed with a good trade-off between efficiency and accuracy. 

C. Stixel algorithm 
The original Stixel-World simply separates obstacles from 

the freespace and background assuming that the surface of an 
obstacle is vertical and the baseline for all obstacles is on the 
ground. The position and tilting angle of the camera are fixed 
during autonomous driving, so the two important input 
parameters are set to constants. All of these factors limit the 
application of the stixel in the assistance of visually impaired 
persons. 

However, the camera tilting angle changes constantly over 
time in visually impaired assistive devices. When people walk, 
obstacles are no longer vertical all time and some of the 

obstacles in the captured image is not connected with the 
ground. Under these circumstances, the original stixel 
algorithm generates false detections and missed detections of 
obstacles and passable areas. This problem represents a 
potential danger to the visually impaired user. What’s more, 
stixel-based approach is insensitive to distant obstacles, and 
directly determines them as part of the background. However, 
for the visually impaired, some distant but fast-moving 
obstacles such as driving vehicles need to be perceived in 
advance. 

Based on above analysis, we aim to improve the stixel 
algorithm by combining the masks of semantic segmentation 
to ensure the accuracy of the results and provided semantic 
awareness. At the same time, we directly calculate the 
traversable area, which greatly simplifies the calculation of 
free space computation [22][23]. Fig. 4 shows our 
optimization results of the stixel segmentation. 

The specific algorithm is as follows. All input images are 
processed at a resolution of 640×360. Refer to the evaluation 

 

 Fig.4. The left pictures are original stixels, and the right ones are our 
optimized stixels. In the above group, the car in the left figure was divided 
into the background, resulting in inaccurate depth information; in the bottom 
group, the distant vehicles and near incomplete people were not detected as 
obstacles. Our results solved these problems. 

Stixel Sound 

Depth/m Loudness 

>9 0 

<3 1 

3~9 Loudness decreases linearly with distance 

Column 
coordinate 

Phase difference 

<160 -90 

160~480 0 

>480 90 

Height Frequency 

- 1 

Fig. 3. Real-time semantic segmentation architecture we use, from left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction 



 

 

TABLE I  SOUND MAPPING RULES OF AVOIDANCE MODE 

 
of different stixel widths in [13], stixel width is set to 5 to 
strike a good balance between flexibility and efficiency.  

Taking the baseline calculation of stixels as an example to 
introduce our algorithm. In order to extract stixels, a frame of 
image is scanned from the bottom up. According to the label 
made by semantic segmentation，if the column has a pixel of 
a car or a person, the row coordinates of the first point of the 
scanned vehicle or person are accumulated, and if there is not, 
the line will be scanned downwards and row coordinates of 
the first ground points are accumulated. Scanning five 
columns and the sum of row coordinates after averaging is the 
baseline of a stixel. The calculation of the topline follows the 
same principle. The depth of the stixels adopts the original 
calculation method, that is, the depth value of each stixel is a 
depth average value of all pixels included in the stixel. 

At the same time, according to the results of the semantic 
masks, we distinguish the stixels between cars and pedestrians. 
Since the current semantic segmentation does not distinguish 
other types of obstacles, they are uniformly identified as 
general obstacles, as introduced in section III. 

D. Sound mapping and interactive programs 

As mentioned in section I, due to the abundant visual 
information acquired with our approach, we have designed 
two assistive modes, hazard avoidance and environmental 
awareness, accordingly, two sound mapping schemes are 
designed. After the device is turned on, the visually impaired 
hear the voice prompt “Please select auxiliary mode” and can 
choose different modes of assistance on their own initiative to 
avoid erroneous physiological discomfort and information 
comprehension over long periods of time. 

We design a stixel-to-sound signal mapping scheme. Each 
sound source signal has three dimensions including phase 
difference, loudness and timbre, respectively, reflecting the 
position, distance and category of the stixel. 

In obstacle avoidance mode, all stixels of obstacles within 
9 meters are mapped to water droplets, of which the loudness 
and phase difference are determined by the distance and 
direction of the obstacle. We use the sound of water droplets 
for feedback because it is not annoying and maintains mellow 
when adjusting the mapping parameters. In context-aware 

mode, vehicles are mapped to horn sound and pedestrians are 
mapped to bell sound, and other obstacles correspond to water 
droplets, which can provide visually impaired people with 
richer environmental information. The timbre of these three 
music sources sound quite different. In this regard, it is easy to 
learn the feedback to distinguish different categories of 
objects. The loudness of the sound ranges from 0 to 1, and the 
left and right channels have a phase difference of -90~90°, 
where 0°means that the obstacle is in front of the obstacle. 
Precisely, specific sound mapping rules are given in the table1. 

III. EXPERIMENTAL TEST AND CONDUCTED USER STUDY 

We collected a real-world dataset by the ZED binocular 
camera from the City College, Nanshan Road and Yuquan 
Campus in Hangzhou, China. While wearing the camera, we 
captured the image at 5FPS so the test results effectively 
reflect the actual feasibility of the entire system. 

In order to measure the computational performance of our 
algorithm, we processed 100 frame disparity images and RGB 
colors, and at the resolution of 640 ×360 on our processor 
which is introduced in Section II(A), the average total 
computation time of a single frame is 36ms, while the image 
acquisition and preprocessing from the smart glasses take 3ms, 
the time cost for the semantic segmentation is 13ms, and the 
time cost for calculating stixels is 20ms. 

Fig. 5 shows the result of our algorithm processing the 
scene image. Different colors of stixels represent different 
distances, while stixel colors encode disparities from close 
(yellow) to far (blue); in the semantic stixels, blue denotes the 
vehicle and red represents the pedestrian. 

In our experiments, we use three different metrics that are 
designed to assess the viability of our semantic stixel model. 
First is the target recognition rate. We classify target obstacles 
into pedestrians (P), vehicles (V), and general obstacles (O), 
and collect statistics on the detection rates within the different 
ranges of distances. Second is the stixel redundancy rate, and 
the calculation formula is the ratio of the number of stixels 
corresponding to the stixels identified as obstacles and the 
number of actual obstacles. The third metric is the accuracy of  

 
Fig. 6. User experience results. 
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the depth of stixels (DAR), which is the ratio of the stixels 
with an accurate boundary (the difference between the stixel 
boundary and the edge of the actual object within 10 pixels is 
considered accurate) in the stixels identified as an obstacle. 
We have randomly selected 100 frames of images for 
statistical purposes from the data sets of the three scenarios 
mentioned above. Test results are shown in the table2. 

The experimental results show that the recognition rate of 
vehicles and pedestrians is higher, and the depth information 
is also more accurate even if the distance is far away. This is 
because the recognition rate is high and edge segmentation 
based on semantic segmentation are calculated well. It’s 
beneficial for visually impaired people to avoid the danger of 
high-speed movement obstacles. For general obstacles, the 
upper boundary segmentation depends on the front 
segmentation algorithm in [9], so it is affected by the distance, 
the recognition rate is higher, and the depth calculation is 
more accurate within 3 meters. Although the recognition 
results from long distances are not satisfactory, it’s sufficient 
for navigational assistance that the close static obstacles are 
prompted. 

To evaluate the actual effect of the entire system and the 
performance of the sound mapping scheme, we also conducted 
a user experience test with six participants including three 
men and three women, participating in our test. They are 
blindfolded and perceived the environment based on the sound 
of our system. 

We design the questionnaire about obstacle categories, 
azimuths, distances, and their physiological experience with 
sound effects. Each item was scored with “well”, “okay” and 
“improvised”, which means it needs to be improved. The test 
results are shown in the Fig. 6. 

It turns out that in the obstacle avoidance mode, each 
person is able to discriminate the orientation of the obstacle 
(left, right or front) and the distance from the sound. In the 
context-aware mode, vehicles and pedestrians can be 
identified, but due to the superposition of multiple sounds, 
common obstacles are sometimes overlooked. After simple 
training, the participants can perceive more specific 
information of the obstacle distance based on loudness. 

TABLE II  SEMANTIC STIXEL ACCURACY 

IV. CONCLUSION AND DISCUSSION 

In this work, we have designed a set of wearable visual 
aids that are mainly composed of a binocular camera (for 
image acquisition), bone conduction headphones (for voice 
interaction) and a computer in a backpack as a host of 
program processing. This set of equipment is of great help for 
the visually impaired, which enhances the mobility owing to 
the road guidance and environmental awareness. 

Our image processing algorithms are based on stixels and 
semantic segmentation. The algorithm has been improved by 
combining the special needs of visually impaired persons, 
such as avoiding some inappropriate assumptions across 
application domains. In addition, we have designed a sound 
mapping scheme to convey the image information to the 
visually impaired. 

At the same time, there is still room for improvement in 
our algorithm. The current approach relies on the results of 
semantic segmentation, which is a heavily researched topic 
where new datasets and network architectures will play an 
essential role. At present, there are some misjudgments in the 
semantic segmentation, such as mis-classifying roadblocks as 
pedestrians, although this has minor effect on obstacle 
avoidance. What’s more, we currently have only solved a 
small part of the demand, next we will work to achieve the 
detection of small obstacles and other special scene like 
upstairs, to satisfy the needs of more complicated conditions 
such as airports and shopping centers. 

In conclusion, it is worth promoting that the research of 
automatic driving technology is in full swing, while the 
research aimed to provide the visual aid for visually impaired 
people is so far relatively rare. Our research has proved the 
feasibility of application alliance and domain transfer. It can 
provide more assistance for the visually impaired by 
improving the technology originally designed for autonomous 
driving. 
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