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Abstract— Depth estimation is a basic problem in computer
vision, which provides three-dimensional information by as-
signing depth values to pixels. With the development of deep
learning, researchers have focused on estimating depth based
on a single image, which is known as the “monocular depth
estimation” problem. Moreover, panoramic images have been
introduced to obtain a greater view angle recently, but the
corresponding model for monocular depth estimation is scarce
in the state of the art. In this paper, we propose PADENet
for panoramic monocular depth estimation and re-design the
loss function adapted for panoramic images. We also perform
model transferring to panoramic scenes after training. A series
of experiments show that our PADENet and loss function can
effectively improve the accuracy of panoramic depth prediction
while maintaining a high level of robustness and reaching the
state of the art on the CARLA Dataset.

I. INTRODUCTION

Monocular depth estimation aims to predict the corre-
sponding depth value of each pixel from a single RGB image,
which is very important for autonomous driving, robotics,
and real-world transportation applications. Panoramic im-
ages, referred as the mosaic of RGB images collected at 360◦

Field of View (FoV), can greatly increase the perception
range of the surrounding scenes. Despite current network
structures such as ResNet [1] and DenseNet [2] which have
strong extraction capabilities, their number of parameters and
inference speed limit their applications in reality. Besides,
those models usually have poor performance on panoramic
images due to their incapability to address the significant
distortions in panoramic images.

On the other side, while panoramic cameras are becoming
popular for being integrated in autonomous transportation
applications, large-scale omnidirectional image dataset with
dense ground-truth depth is lacking, whose acquisition is
highly complex [3] and sometimes prohibitive for distorted,
wide-FoV data. This poses significant challenges to predict
depth for images with large view angle up to 360◦.

To address these problems, this paper proposes PADENet,
which concatenates an improved scene understanding module
after feature extraction network, and finally upsamples the
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feature map to the original size. At the same time, con-
sidering the lack of the panoramic RGB-Depth dataset, we
leverage the equirectangular projected KITTI Dataset [3] for
training. Afterwards, network parameters are transplanted to
the panoramic image in order to perform depth inference.
This paradigm allows to re-use conventional pinhole datasets
for obtaining a depth estimation model that adapts comfort-
ably to panoramic imagery, bypassing the prohibitive process
of ground-truth acquisition for omnidirectional images.

We adopt unsupervised learning to train our depth esti-
mation model. In the design of loss function, we apply the
wrap loss of reconstructed view as a criterion. Besides, due
to the distortion characteristics of the panoramic images,
we apply window-based loss along with the basic wrap
loss. Experiments show that the combined loss function can
achieve higher quality of panoramic depth estimation.

The contributions of this paper lie in the following aspects:
• We propose PADENet, which is an effective and robust

panoramic monocular depth estimation network.
• We improve the loss function for PADENet by com-

bining the basic wrap loss and window-based loss to
promote the quality of predicted depth map.

• We leverage the equirectangular projected KITTI
dataset [3] for training, and then transplant the
trained model to panoramic images during inference.
Our implementations and codes will be available at:
https://github.com/zzzkkkyyy/PADENet.

II. RELATED WORK

A. Monocular Depth Estimation on Rectified Images

Modern monocular depth estimation methods based on
deep learning significantly outperform those traditional meth-
ods. Here, we mainly review those methods using deep learn-
ing. Eigen et al. [4] first used convolutional neural networks
into monocular depth estimation by dividing the network
into Coarse Network and Fine Network. Jiao et al. [5]
enhanced monocular depth estimation with the assistance of
semantic segmentation and attention-driven loss. Fu et al. [6]
discretized the depth information into several bins and then
performed an additional classifier to obtain final results.

While supervised learning dominates the area of monocu-
lar depth estimation, the models usually lose generalization
and robustness due to dataset bias. Garg et al. [7] first pro-
posed an unsupervised training scheme, which only required
left and right views during training. The network predicted
disparity maps first and converted them to depth maps later.
Godard et al. [8] further improved the methods by putting



forward three losses: reconstruction loss, image smoothness
loss and left-right disparity map matching loss. Additionally,
multiple clues are applied in training process. Diaz et al. [9]
utilized the semantic segmentation to discretized depth infor-
mation. Ren et al. [10] added scene understanding modules
based on scene classification and coarse depth estimation to
refine the predictions. However, these approaches cannot be
directly applied for panoramic images due to the significant
distortions and complexities.

B. Monocular Depth Estimation on Panoramic Images

Despite the fact that there are many effective models
dealing with monocular depth estimation on rectified images,
monocular depth estimation on panoramic images is less
explored due to the lack of high-quality datasets. In order
to overcome these shortages, Gregoire et al. [11] proposed
an effective method using the projected KITTI dataset to
solve the problem of lack of training samples. Alisha et
al. [12] presented CylindricalSfMLearner for estimating mo-
tion structure and used it to assist panoramic depth estima-
tion. Keisuke et al. [13] proposed to replace the normal con-
volution into a distortion-aware convolution in order to learn
the distorted feature better. Nikolaos et al. [14] proposed
UResNet and RectNet, which were specially designed for
panoramic depth estimation by adjusting the convolution’s
receptive field and kernel size. However, we find that most
works were aimed for estimating indoor panoramic depth
information. In this work we extend previous works to
address outdoor panoramic monocular depth prediction.

III. METHODOLOGY

A. Equirectangular Projection

To obtain data suitable for training a panoramic depth
estimation model, we present the method of projection trans-
formation to adapt existing rectilinear image datasets into
equirectangular ones. The coordinates of rectified images
represent horizontal and vertical directions in the rectan-
gular coordinate system, while coordinates of equirectan-
gular images represent longitude and latitude directions in
the spherical coordinate system. Therefore, equirectangular
projection is to perform the conversion from rectangular
coordinates to equirectangular coordinates. The illustration
of such projection is shown in Fig. 1.

Given the equirectangular coordinate of a pixel in original
image equals to (ϕ, Φ), and the corresponding rectangular
coordinate equals to (x, y, z), the projection can be written
as Equation 1:

φ = arctan
(x
z

)
ϕ = arcsin

(
y√

x2 + y2 + z2

)
(1)

For the simplicity of the projection equation, we define
the projection process as function F. Then Equation 1 can
be rewritten as Equation 2:

(x,y)

(φ,Φ)

Fig. 1: Illustration of the equirectangular projection.
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We perform the mapping process given the height and
width of the projected equirectangular images, which are
equal to h_equi and w_equi, respectively. Here, the maximum
horizontal and vertical view angle are fov_h and fov_w,
respectively. The x-axis and y-axis coordinates are X and Y,
respectively. Thus, the mapping equation between view angle
and equirectangular coordinates is depicted in Equation 3:

X =
φ · w_equi
fov_w

− w_equi
2

Y =
φ · h_equi
fov_h

− h_equi
2

(3)

Since the mapping process is linear, it can also be repre-
sented as matrix G, written as Equation 4:XY

1

 = G ·
(
φ
ϕ

)
(4)

Finally, the transformation is combined together to obtain
the equirectangular projection as Equation 5 shows:XY

1

 = G · F

xy
z

 (5)

Besides, if rectangular projection is required, we only need
to perform the inverse transformation as Equation 6 shows:xy

z

 = F−1

G−1 ·
XY

1

 (6)

B. Dataset Transformation

One main difficulty in panoramic monocular depth esti-
mation is the lack of corresponding outdoor dataset. Inspired
by [11], we use the equirectangular projection method men-
tioned in Sec. III-A to convert the rectilinear KITTI Dataset
and use the projected dataset for training the panoramic
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Fig. 2: Overview of the proposed PADENet architecture.

depth estimation model. Since it is hard to obtain precise
depth information in the real-world panoramic scenes, one
alternative choice is to use the CARLA [15] automotive
environment simulator to generate the synthetic panoramic
scenes and corresponding depth ground-truth for validation.

Specifically, we convert the original KITTI Dataset [3] to
equirectangular images whose resolution is 960×320, which
is a subregion of 360◦-full panoramic image. We find that
the training model based on the projected KITTI Dataset [3]
can still maintain a high-level accuracy and robustness when
testing on 360◦-full panoramic image.

C. Network Architecture

The structure of the entire network is shown in Fig. 2,
which can be divided into three parts: Feature Extraction
Module, Scene Understanding Module, and Upsampling
Module. In Feature Extraction Module, we use the VGG [16]
network structure. In Scene Understanding Module, we de-
sign a parallel module for multi-scale extraction of the in-
formation for the input feature map, which will be described
in the following paragraphs. In Upsampling Module, we
use bilinear upsampling and convolution layers instead of
deconvolution layers to restore the initial resolution enhanced
by skip-connection mechanism. These improvements are to
ensure that the feature information of the original image
are well delivered to the Upsampling Module as much as
possible.

Scene Understanding Module, inspired by PSPNet [17]
and DORN [6], is illustrated in Fig. 3. We design the
structure so that it can learn the global information and
specific details at the same time using different parallel
convolutions, where all useful information are aggregated
into the Upsampling Module. As shown in Fig. 3, Scene
Understanding Module is divided into three modules: Global
Understanding Module, Pixel Transformation Module, and
Atrous Spatial Pyramid Pooling (ASPP) Module. Global Un-
derstanding Module uses global pooling and fully connection
to obtain a global feature vector of the feature map; Pixel
Transformation Module learns the transformation of each lo-
cal pixel feature through 1×1 convolutions; ASPP Module is
originally used in DeepLab [18], which sets different dilation
rates to cover different sizes of receptive fields. Considering
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Fig. 3: The proposed Scene Understanding Module for multi-
scale feature extraction.

that horizontal distortion of the panoramic image at the pole
position is larger than vertical distortion, we design three
sets of dilation rates in the horizontal direction and two sets
of dilation rates in the vertical direction. The outputs are
concatenated and passed to a 1×1 convolution layer to adjust
the channels. In this way, a wide variety of scales is covered
without losing original spatial resolution.

D. Loss Function

In monocular depth estimation, there are two main solu-
tions, namely supervised learning and unsupervised learning,
depending on whether dataset contains ground-truth depth.
We eventually adopt unsupervised learning as our training
strategy since the training data contains only binocular
images, and adapt the original loss function based on the
characteristics of the panoramic image.

1) Basic Unsupervised Learning Loss: The loss function
of unsupervised learning can be divided into the following
three terms, in which p is the original grid coordinate of the
image and d is the corresponding disparity value:

Reconstruction loss. It describes the difference between
the left (right) view reconstructed by the corresponding
disparity map and the real left (right) view as Equation 7
indicates:

Lrect =
1

N

∑∣∣∣Iij − IG·F(F−1(G−1·pij)+[d,0,0]T )

∣∣∣ (7)

Smoothness loss. It describes the smooth gradient regular-
ization term of disparity map as Equation 8 shows:

Lsmooth =
1

N

∑
|∂xdij | e−‖∂xIij‖ + |∂ydij | e−‖∂yIij‖ (8)

Left-right consistency loss. It describes the difference be-
tween the reconstructed disparity map and the original dis-
parity map as Equation 9 shows:

Llr =
1

N

∑∣∣∣dij − dG·F(F−1(G−1·pij)+[d,0,0]T )

∣∣∣ (9)

What should be aware of is that the disparity wrapping
process corresponds to a curve in the panoramic image.
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Fig. 4: Illustration of the ring padding for continuous
panoramic depth estimation.

Therefore, when calculating the reconstruction loss and left-
right consistency loss, images should be projected to the cor-
responding Cartesian coordinate system and be re-projected
back after wrapping.

2) Window-based Loss: The basic unsupervised learning
uses pixel-wise matching as the loss function, which may
make network fall into the local minima and cause large
prediction error in smooth areas. Inspired by ActiveStere-
oNet [19], we select a window around each matching pixel
as the region of matching candidates, whose shape is set to
(2k + 1) × (2k + 1). We then calculate the matching loss
for each pixel in the window and summarize by weight as
the final loss. With this design, each pixel in the window is
regarded as a matching target, thus reducing the problem of
local minima.

We let I represents pixel’s value. Specifically, each pixel’s
matching loss is defined in Equation 10:

Cij =
∣∣Iij − I ′xy∣∣ (10)

Meanwhile, each pixel’s weight is defined in Equation 11:

wij = e−
|Iij−I′xy|

2 (11)

Finally, all pixel losses in the window are added with a
corresponding weight, outputing the improved reconstruction
loss as Equation 12 shows:

Lij =

∑i+k
x=i−k

∑j+k
y=j−k wxyCxy∑i+k

x=i−k
∑j+k

y=j−k wxy

(12)

3) Fusion Strategies and Improvements: In Encoder-
Decoder mechanism, every level of decoder is a part of
refinement. Therefore, different levels of loss are often added
when calculating loss. We find that for low-resolution maps,
the information has already been greatly pooled, thus window
mechanism cannot improve the accuracy of the disparity pre-
diction. For high-resolution maps, window mechanism is still
effective because the receptive field’s size is relatively small.
We also verify that using the original loss function at low-
resolution outputs and window-based loss at high-resolution
outputs can achieve better results in the experiments.

E. Transplanting to Panoramic Images

Because network parameters are independent of the input
size, different shapes of input images will not affect the
process of forward inference. Here, we use the projected
KITTI images for training, and directly input the complete
panoramic images by using the same parameters when per-
forming panoramic depth estimation.

However, when we directly input the full panoramic
image, the left and right edge objects may not be aligned
and break the continuity. Inspired by Yang et al. [20],
we adopt ring padding instead of normal padding aimed
for panoramic images, which can ensure the continuity of
convolution operation. In this way, the ring padding strategy
can effectively keep the continuity of depth prediction, which
helps to attain 360◦ seamless estimation, eliminating the
blind spots for surrounding sensing. Details are expressed
in Equation 13 and Fig. 4:

upad ≡ u(mod w) (13)

where u is the x-axis coordinate of a pixel, upad the
wrapped x-axis coordinate and w the width of the image.

IV. EXPERIMENTS

A. Datasets

KITTI: The KITTI Dataset [3] is a widely-used au-
tonomous driving dataset. Full KITTI Dataset [3] contains
42382 rectified stereo pairs from 61 scenes, where each
image has a 1242 × 375 resolution. However, we find
that the increasing amount of image pairs doesn’t help the
convergence process much. Therefore, we simply choose a
subset of KITTI Dataset [3] used in object detection. We call
it “KITTI Detection Dataset”. The KITTI Detection Dataset
contains 7481 training image pairs and 7518 testing image
pairs. Here we only use its training split to yield the depth
estimation model. We take the first 7200 image pairs for
training and the following 281 image pairs for validation.

CARLA: As there is no available depth-annotated automo-
tive panoramic imagery, we use a dataset which is generated
from CARLA automotive environment simulator for testing
and call it "synthetic CARLA Dataset" [15]. The synthetic
CARLA Dataset contains 200 panoramic images which cover
the whole 360◦ view angle. Each image has a ground-truth
depth map, which facilitates the quantitative evaluation of our
model. We follow the conventions for depth evaluation [3],
and filter out the pixels whose distance is less than 0m or
greater than 50m.

B. Implementation Details

We use PyTorch [21] and a NVIDIA GeForce GTX 1080Ti
GPU for our model’s training and validation. Due to the
limited hardware, we set batch size to 1 when training the
PADENet and find that the model still behaves well. We
use original loss, window-based loss and fused loss for
comparison. The model is trained for 30 epochs on the
projected KITTI dataset for each parameter setting. The
initial learning rate is 1e-4 and is updated to 2e-5 in the



TABLE I: Basic loss v.s Window-based loss.

Methods Abs. Rel. Sq. Rel. RMSE RMSE log Acc: δ < 1.25
Garanderie et al. [11] 0.231 6.377 3.598 0.463 0.716
Ours with basic loss 0.203 5.274 3.571 0.446 0.738

Ours with window loss at all levels 0.200 4.427 3.550 0.443 0.752

TABLE II: Comparison among different settings of window shape.

Methods Abs. Rel. Sq. Rel. RMSE RMSE log Acc: δ < 1.25
Ours with window loss at all levels 0.200 4.427 3.550 0.443 0.752

Ours with window loss at last 1 level 0.180 4.063 3.290 0.420 0.757
Ours with window loss at last 2 levels 0.174 3.865 3.132 0.411 0.769

Ours with window loss at last 2 levels with dilated rate 2 0.174 3.384 3.230 0.419 0.750

last 5 epochs for fine-tuning. Adam optimizer is used during
training.

C. Quantitative Results

We conduct 2 groups of experiments, one of which is to
validate the effectiveness of our PADENet and the proposed
window-based loss compared to original unsupervised loss,
while the other is to find the best fusion parameters setting
for loss function. All those experiments are conducted by
training on the projected KITTI Detection Dataset and testing
on the synthetic CARLA Dataset. The evaluation metrics
include Absolute Relative Error (Abs. Rel.), Square Relative
Error (Sq. Rel.), Root Mean Square Error (RMSE and RMSE
log) and δ threshold (Acc). We test our model’s quantitative
metrics on the valid split of synthetic CARLA Dataset.

Since only Garanderie et al.’s work [11] use synthetic
CARLA Dataset for the quantitative evaluation about out-
doors panoramic depth estimation, here we just compare our
results with theirs. As displayed in Table I, our results in
different evaluation metrics both outperform Garanderie et
al.’s work [11] by large margins, reaching the new state of
the art of outdoor panoramic monocular depth estimation.
Besides, the network inference frame rate can reach 50fps
on the GTX 1080Ti GPU processor, which makes the model
possible to infer in real time, which is critical for autonomous
driving systems.

D. Quantitative Analysis

According to the experimental results, we find that
PADENet can improve the quality of panoramic depth es-
timation significantly. Additionally, we test different fusion
strategies in order to get better performance.

As is shown in Fig. 2, PADENet has 4-level output
maps from low to high resolutions. We set the first 4-k
layers to calculate the original unsupervised losses, and the
last k layers to calculate window-based losses. We perform
experiments by setting k = 1 and 2 respectively due to
hardware limitations. The window size is set to 11 according
to previous comparison experiments. In addition, we adopt a
similar idea of dilated convolution, and set the dilation rate
to 1 and 2. respectively.

As is displayed in Table II, it can be seen that final depth
prediction reaches better performance when k is set to 2. We

also find that if dilate rate is changed from 1 to 2, while the
result measured in square relative error is slightly better, the
performance on RMSE and accuracy is worse. This shows
that dilated rate is not very relevant. Finally, we use the
trained model with k = 2 as our final predicting model. Some
representative prediction samples on the projected KITTI
Detection Dataset are shown in Fig. 5.

The qualitative panoramic depth estimation effect on the
synthetic CARLA Dataset [15] is shown in the Fig. 6. We
find that the trained model on the Projected KITTI Detec-
tion Dataset can be transplanted well into 360◦ panoramic
images. At the same time, it has an excellent depth estimation
effect for cars, boxes, telephone boxes and other objects in
the CARLA Dataset [15]. Comparing the results of training
with full window-based loss in Table II, we find that the
fusion strategy improves the quality of depth prediction. At
the same time, the continuity of some slender objects has
also been greatly improved. This is because the calculation
process of window-based loss aggregates all pixels in the
candidate window. Overall, the proposed PADENet enables
to attain fully dense, seamless and precise depth estimation
in 360◦, beneficial for surrounding sensing of autonomously
driving vehicles.

V. CONCLUSIONS

Monocular depth estimation is a traditional problem in
computer vision, while recently it gains striking progress
due to the rapid development of deep learning. Meanwhile,
panoramic monocular depth estimation receives increasing
attention these days because of its 360◦ view angle. In this
paper, we proposed a network called PADENet. Additionally,
we fuse the original unsupervised loss and window-based
loss. All these methods and innovations lead to much higher
performance, allowing PADENet to achieve the new state
of the art of panoramic monocular depth estimation, which
prove the effectiveness of our proposals.

However, there are still some points that we can work up
with in the future. For instance, window-based loss can be
updated in order to fit the panoramic images better. Besides,
considering that the resolution of panoramic images is usu-
ally much larger than normal rectified images, more efficient
backbone can be introduced in the model. In the future, we
aim to optimize our model and utilize new techniques such



Fig. 5: Qualitative examples of using PADENet on the projected KITTI Detection Dataset.

Fig. 6: Qualitative examples of using PADENet on CARLA Dataset.

as GANs [22] to further improve the quality of panoramic
monocular depth estimation, which can be deployed on real-
time vision sensors and to assist the real-world autonomous
transportation applications.
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