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Abstract— Semantic Segmentation (SS) is a task to assign
semantic label to each pixel of the images, which is of
immense significance for autonomous vehicles, robotics and
assisted navigation of vulnerable road users. It is obvious
that in different application scenarios, different objects possess
hierarchical importance and safety-relevance, but conventional
loss functions like cross entropy have not taken the different
levels of importance of diverse traffic elements into consid-
eration. To address this dilemma, we leverage and re-design
an importance-aware loss function, throwing insightful hints
on how importance of semantics are assigned for real-world
applications. To customize semantic segmentation networks for
different navigational tasks, we extend ERF-PSPNet, a real-
time segmenter designed for wearable device aiding visually
impaired pedestrians, and propose BiERF-PSPNet, which can
yield high-quality segmentation maps with finer spatial details
exceptionally suitable for autonomous vehicles. A comprehen-
sive variety of experiments with these efficient pyramidal con-
text networks on CamVid and Cityscapes datasets demonstrates
the effectiveness of our proposal to support diverse navigational
assistant systems.

I. INTRODUCTION

Semantic Segmentation (SS) is a task to assign semantic
labels to each pixel of the images, which is of crucial sig-
nificance for autonomous vehicles, robotics and navigation
assistance systems for vulnerable road users like visually
impaired pedestrians, where safety is critical [1].

In recent years, with the development of deep learning,
SS has come into the stage based on deep convolutional
neural networks (CNNs) since the milestone created by Fully
Convolutional Networks (FCN) [2]. The performance of FCN
is surpassed by subsequent PSPNet [3] and DeepLab [4],
which can perform semantic segmentation with high accura-
cies and huge numbers of parameters. Inevitably, the complex
calculation keeps SS from being put into practice for real-
time applications in devices with limited computation re-
sources. In previous works, we propose ERF-PSPNet [5][6],
a real-time SS network especially designed for navigation
assistance systems supporting the visually impaired, which
largely sacrifices the resolution and accuracy of edges ex-
traction, resulting in coarse segmentation maps. However,
applications like autonomous vehicles and driving assistance
require high-resolution semantic maps and highly accurate
road boundary segmentation. To address this problem, we
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Fig. 1. Effect of different loss functions: (c) Output of ERF-PSPNet trained
with cross-entropy loss, (d) Output of ERF-PSPNet trained with focal loss.
It could observed that the model trained with cross-entropy loss has a higher
recall rate and lower precision than cross focal loss.

TABLE I
FOCAL LOSS V.S CROSS-ENTROPY LOSS

Loss Recall rate Precision IoU
Focal loss 0.80 0.85 0.70

Cross-entropy loss 0.94 0.63 0.60

extend ERF-PSPNet with novel efficient pyramidal context
network design by proposing BiERF-PSPNet, which can
yield high-quality semantic segmentation maps with finer
spatial details, while maintaining real-time inference.

In addition to the architecture design, we made key obser-
vation that loss function is the key element in the training
procedure and greatly influences the SS output. Traditional
cross-entropy loss function is broadly used for SS, but
the loss function only pays attention to the frequencies
of objects by applying weights for different classes with
different frequencies. For another thing, the focal-loss [7]
that is designed for difficulty-aware object detection task has
also been utilized in existing researches to train SS networks.
Evidently, the model trained with different loss functions
will have a vast difference between recall rate and precision.
Before our project, we conduct an experiment on a water
puddle segmentation dataset [8]. We find that the model
trained with focal loss possesses a higher precision while
the model trained with cross-entropy loss has a higher recall
rate, as shown in Fig. 1 and Table I. We argue that in some
safety-critical application scenarios of autonomous vehicles,
recall rate plays a more important role than precision for
traffic objects like cars, buses, and pedestrians, as we need
to focus on the detection of them, which need to be detected
with high recall rate. In other words, it is preferred to detect it



wrongly rather than miss it, because these traffic objects will
be dangerous if the algorithm misses them and predict them
as safe roadways. In addition, hierarchical importance should
be emphasized for different objects for autonomous vehicles.
Taking it for granted, roadways and sidewalks are more
important than sky and buildings, while cars and pedestrians
are even more important and safety-critical than those flat
classes.

Therefore, existing methodologies like focal loss and
cross-entropy loss are not ideally suitable for SS associated
with autonomous driving system. As explained above, an
autonomous driving system needs to focus on some impor-
tant objects for driving rather than segment all classes with
the same level of importance. In this paper, inspired by [9],
we adapt and re-design an importance-aware loss function
(IAL), and perform a comprehensive set of experiments to
prove its effectiveness and wide applicability.

The contributions of the paper lie in four key aspects:
• We adapt a real-time SS architecture named ERF-

PSPNet, and extend the model into a bilateral archi-
tecture BiERF-PSPNet to recover better spatial details.

• We adapt and re-design an importance-aware loss func-
tion, and improve its stability and reliability.

• A series of experiments are conducted on two au-
tonomous driving benchmark, i.e., CamVid [10] and
Cityscapes [11], which demonstrate the structure of the
refined model can recover better spatial information and
the effectiveness of the adapted IAL.

• We perform a systematic analysis of the experiment
results, throwing insightful hints on how importance is
assigned for real-world SS frameworks. Our implemen-
tations and codes are available at: https://github.
com/Katexiang/ERF-PSPNET

II. RELATED WORK

A. Semantic Segmentation Neural Networks

Since the milestone created by FCN, SS has gain tremen-
dous advances based on CNNs. The ConvNets first transfer
known classification networks into SS by making them fully
convolutional. Immediately following the success, UNet [12],
DeepLab [4] and many other SS Networks were proposed.
Many of them have achieved state-of-the-art performance on
different benchmarks of SS task. Their normal procedure
involves encoding more spatial information or enlarging the
receptive filed at the expenses of huge operations and multi-
ple parameters. Therefore, they normally perform inference
at a low speed so that they can not be applied for real-time
application like autonomous vehicles.

In order to put the SS networks into practice, many light-
weighted real-time SS networks were proposed. ENet [13]
is one of the first networks in pursuit of real-time inference,
which is modified from ResNet structure [14] to perform
SS with much fewer parameters. ERFNet [15] [16] and
our previous ERF-PSPNet [5][6] utilize residual factorized
module to reduce parameters and keep fine performance.

At the same time, some SS networks with multi-path
structure were put forward to refine the spatial details of

the output. ICNet [17] is one of the pioneer with multi-
path structure, which uses multiple-size input image at
shallow layers to get spatial information, while inputting
small image to deep layers to extract semantic information.
BiSeNet [18] works in a different way, which divides the
network structure into two paths, one for spatial information
to refine output, and another for excavating context infor-
mation. ContextNet [19] combines a deep network branch
at low resolution capturing global context efficiently with
a shallow branch focusing on high-resolution segmentation
details to reach competitive performance.

B. Somewhat-Aware Method for training CNNS

With the development of deep learning, many training
methods are advanced to solve somewhat-aware problems
like difficult-aware [20] and attribute-aware [21] SS. Li et
al. [20] considered that different pixels own different ranks
of difficulty and propose a difficulty-aware network to pay
attention to more difficult pixels. At the same time, focal
loss [7] acts as a loss function to cope with the detection of
difficult objects. Inspired by attention mechanism, Chen et
al. [22] designed a SS network to emphasize objects with
different scales. Bulo et al. [23] introduced a novel loss
max-pooling concept for handing imbalanced training data
distributions. Following it, Importance-Aware-Loss (IAL)
created by Chen et al. [9] was leveraged to distinguish
important pixels from normal pixels. But IAL is unstable,
sometimes the effect is remarkable, and sometimes it is
unserviceable. To alleviate the shortcomings, in this paper
we re-design and adapt to a more stable IAL, and prove the
effectiveness.

As is shown above, among the various existing notions of
SS networks, they will be coming into use in the near future.
Besides, the somewhat-aware method can be exploited to
cope with certain application problems in somewhat-bias
tasks like importance, scale, difficulty and so on. Based on
these observations, this paper aims to cope with the problem
that different objects own different levels of importance in
autonomous driving systems.

III. METHODOLOGY

In this section, we firstly detail the modified version of
Importance-Aware-Loss (IAL), and then illustrate our real-
time SS networks, ERF-PSPNet and its extended version,
BiERF-PSPNet.

A. Importance-aware Loss Function

IAL proposed by Bi et al. [9] is a modified version
of entropy-cross loss function in practice. Making a brief
introduction to traditional entropy-cross loss function I which
is defined by:

I = −
H∑
i=1

W∑
j=1

qi,j · log(pi,j) (1)

where qi,j and pi,j are the one-hot encoding label and output
at i-th row and j-th column, both of which have the shape of
(1,C) (C: the number of classes). When training the model,
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Fig. 2. (a) shows the rankings of importance of CamVid classes, G3 is the
most important group. (b) and (c) are the importance matrices, (b) illustrates
the M1, (c) illustrates the M2, where the blue area belongs to G1, the yellow
area belongs to G2, and the green area belongs to G3.

I needs to be divided by H and W, which represents height
and width of the image respectively. However, the model
trained with the loss function may segment certain pixels into
classes that occupies most pixels of the image. Therefore,
weight ωi,j can be employed in the loss function to enable
the model to pay attention to the rare classes. It is defined
by:

ωi,j =
1

ln(a + fi,j)
(2)

where a is a hyper-parameter avoiding divided by zero, in
this paper, we set it to 1.02. And fi,j is the pixel sum of the
class at i-th row and j-th column divided by the number of
input image’s pixels. Therefore, I can be modified into

I = −
H∑
i=1

W∑
j=1

ωi,j · qi,j · log(pi,j) (3)

In order to enable models to focus on certain important
objects, we need to exert dynamic weight for loss function.
Taking CamVid as an example, the dataset has 11 classes,
i.e., sky, building, pole, road, sidewalk, tree, sign, fence, car,
pedestrian and bicyclist, which will be detailed in Section IV.
First, we categorize the classes into three importance groups
as a hierarchical structure like Fig. 2. For autonomous driving
systems, the traffic objects like cars, pedestrians are the most
important, while the road or sidewalks are less important,
the sky and buildings away from the passable area are the
least important. Then we divide the I into three parts, i.e.,
I1, I2 and I3, each of which stands for the certain part of
the cross-entropy loss belonging to certain group. Following
the rationale, here comes to importance matrix, Mi. If we
have three ranks of importance, we should construct two
importance matrices, i.e., M1 and M2 as shown in Fig. 2.
Taking M2 as an example, for three ranks of importance
category, the most important classes are assigned to 1 at

both matrices, while the classes of middle rank are signed
to 1 at M1 and 0 at M2, and the least important classes are
assigned to 0 at M1 and X at M2 (X is a number either
0 or 1). They are the key elements to dynamically assign
importance weights for the loss function.

Afterwards, we need to utilize the matrices to construct
the dynamic importance weights. The dynamic weight of a
group ft is defined as∑∑

[(Mt,i,j + λ)0.5 · (pc,i,j −Mt,i,j) · (Mt,i,j 6= X)]2

Nt
(4)

where ft (t can be chosen as 2 or 3 in three-rank importance
system as the G1’s importance weight is 0) is the dynamic
importance weight; λ is a tuning parameter set to 0.5 in order
to take the lower-importance category into consideration
and avoid ignoring them when calculating the dynamic
importance weight. Mt,i,j is the value of the importance
matrix, while pc,i,j is the ground-truth channel value of the
output at i-th row and j-th column; pc,i,j is the key element
of the weight pushing the loss function focusing on important
category. And the value of (Mt,i,j 6= X) is 0 if the value of
the matrix is X else the value is 1. Nt is a normalization
factor, which is the pixel sum of the full image when t is 2
and the pixel sum of G2 and G3 when t is 3.

At present, the proposed loss function can be defined by

IAL = I1 + (f1 + α) · I2 + (f2 + α) · (f3 + α) · I3 (5)

where IAL is the ultimate loss function, α is a tuning
parameter being set to 1 in our experiment.

B. Architecture

In view of the trade-off between efficiency and accuracy,
we select an efficient pyramidal context network, i.e., ERF-
PSPNet [5] as our base net. As is shown in Fig. 3(a),
the model follows a typical encoder-decoder architecture.
The model is a rational combination of efficient residual
factorized network (ERFNet) and pyramid scene parsing
network (PSPNet). The encoder originates from ERFNet,
which utilizes a sequential architecture to produce down-
sampled feature maps. The encoder first utilize the “down-
sampler” block as detailed in [13] to down-sample the
feature map quickly in order to reduce computation costs.
The highlight of the encoder is “Non-bottleneck-1D” as
detailed in [15] enabling an efficient utilization of minimized
amount of residual layers to extract effective feature maps
and achieve high efficiency. Following the pyramid pooling
module modified from PSPNet, the decoder is designed
to harvest contextual information among feature maps of
varied sizes and attain larger receptive field. After that, the
feature maps are bilinearly interpolated and cascaded to form
the final feature representation. Following the concatenation
layer, we append a convolution layer to re-weight the feature
representation. In the end, we append a 1×1 kernel clas-
sification convolution layer, bilinear interpolation layer and
softmax layer to output the final result.

The SS network is especially designed for assisted navi-
gation of the visually impaired. Therefore, the segmentation



(a) ERF-PSPNet
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Fig. 3. The architecture of our semantic segmentation networks: (a) ERF-PSPNet and (b) BiERF-PSPNet.

at the semantics boundaries (e.g., road boundaries) remain
coarse, because the decoder attains better contextual infor-
mation at the sacrifice of texture and spatial information,
which are less desired by visually impaired pedestrains,
but these details are important for autonomous driving.
Inspired by bilateral BiseNet and ContextNet, we advance
ERF-PSPNet by proposing an important variant of the SS
network with a different style. Making a brief introduction
of BiSeNet, it is composed of spatial path and context
path. The context path is a feature extractor to attain deep
semantic information at low computation cost. In contrast,
the spatial path is a concatenation of several convolution
layers as shallow layers to extract spatial information fed
with a high-resolution image. Therefore, BiSeNet’s output is
not only of high precision but also possesses fine textures.
Therefore, another efficient pyramidal context network, i.e.,
modified ERF-PSPNet is proposed concerning the textures
of the output, named BiERF-PSPNet as shown in Fig. 3(b).
Different from BiSeNet, our proposed model possesses two
input images, the smaller one of which serves as the context
information source going through deep neural network to
attain semantic information, and the larger one of which is
used for extracting spatial information to refine the results.
In the end, feature maps of the two paths are fused by an
attention module as shown in Fig. 3(b). In our experiments,
H1 and W1 are 1024 and 2048 respectively. H and W are
360 and 720 respectively.

IV. EXPERIMENTS

In order to verify our model and IAL, we conduct a series
of experiments on dataset, i.e., CamVid and Cityscapes.

A. Datasets

CamV id : The dataset is a street scene dataset from a
driving vehicle’s perspective containing 701 images of 720

× 960 and involving 11 semantic categories, 367 of which
belong to its training set and 233 of which belong to the
validation set.
Cityscapes : The dataset is a street scene dataset from

the perspective of an intelligent car, which contains 2975
fine annotated images for training and another 500 images
for validation. The resolution of the images is 1024 × 2048,
we select 19 pre-defined classes for training and validation.

B. Implementation Details

We use Tensorflow and a NVDIA GeForce GTX 1080Ti
GPU for training and validation. Due to the limited memory
we set batch size to 8 when training ERF-PSPNet and 5 when
training BiERF-PSPNet. ERF-PSPNet’s mIoU can reach 59.7
at a highly efficient resolution of 360 × 720, but it can
be enhanced to 64.5 when adopting data augmentations.
In order to facilitate fair comparison, we abandon data
augmentations for our experiments inspite of the effect for
advancing performance and robustness of the models. The
models are trained for 300 epochs (for both datasets) with
Adam optimization algorithm. The initial learning rate is
0.001 divided by 10 every 100 epochs. For the sake of
combatting overfitting, we use the L2 weight regularization
with decay of 0.0002.

C. Quantitative Results

We conduct three groups of experiments, one of which
is conducted on CamVid, and others are conducted on
Cityscapes.

For CamVid, we select the ranks of importance as depicted
in Fig. 2(a). From the results of Table II and Table V, we
observe that the recall rates of G3 have been advanced espe-
cially the classes like sign, car and pedestrian, and the mean
recall rate has been improved by around 1 point. In view
of the different categories between CamVid and Cityscapes,



TABLE II
CROSS-ENTROPY LOSS V.S IAL ON CAMVID BY ERF-PSPNET (%).

G3,G2 AND G1 ARE THE GROUPS OF THE CLASSES. G3 IS THE MOST IMPORTANT GROUP AND G1 IS THE LEAST IMPORTANT GROUP.

Group G3 G2 G1
Class Sign Car Pedestrian Bicyclist Pole Road Sidewalk Fence Sky Building Tree

Cross-Entropy
Precision 33.0 86.2 47.8 69.4 35.9 93.8 83.3 39.9 94.5 85.6 76.7

Recall rate 34.0 79.9 63.7 47.2 42.6 97.1 81.9 25.3 94.2 82.3 80.5
IoU 20.1 70.9 37.6 39.1 24.2 91.2 70.3 18.3 89.3 72.3 64.7

IAL
Precision 31.0 83.1 39.3 65.6 31.3 94.1 81.1 34.1 94.8 86.2 76.6

Recall rate 47.0 83.4 69.1 42.7 40.6 96.4 83.3 27.3 93.0 79.5 78.7
IoU 23.0 71.3 33.5 34.9 21.5 90.9 69.7 17.8 88.5 70.6 63.4

TABLE III
CROSS-ENTROPY LOSS V.S IAL ON CITYSCAPES OF G3 BY BIERF-PSPNET (%)

Class Traffic Light Sign Rider Truck Bus Train Motorcycle Bicycle

Cross-Entropy
Precision 72.8 81.8 61.3 73.1 69.6 64.5 46.5 77.7

Recall Rate 62.0 73.4 50.3 62.2 72.2 22.4 34.3 77.0
IoU 50.4 63.1 38.2 50.6 54.9 19.9 24.6 63.0

IAL
Precision 63.5 73.6 61.4 72.6 70.0 78.7 51.6 76.2

Recall rate 68.9 78.4 47.6 61.5 76.7 46.0 34.1 79.7
IoU 49.4 61.2 36.6 49.9 57.7 40.8 25.8 63.8

TABLE IV
CROSS-ENTROPY LOSS V.S IAL ON CITYSCAPES OF G2 AND G1 BY BIERF-PSPNET (%)

Group G2 G1
Class Car Sidewalk Fence Pole Pedestrian Road Building Wall Vegetation Terrain Sky

Cross-Entropy
Precision 94.1 84.1 65.4 70.0 71.4 98.7 92.9 63.6 94.3 73.9 94.2

Recall rate 95.4 88.5 47.2 65.4 87.7 98.1 94.0 41.5 94.7 68.3 97.6
IoU 90.0 75.8 37.7 51.0 64.9 96.8 87.7 33.6 89.6 55.0 92.1

IAL
Precision 93.0 81.1 63.7 65.1 69.4 98.9 93.4 64.4 94.4 70.0 94.9

Recall rate 96.1 89.6 47.5 67.0 88.6 97.5 93.0 45.8 93.6 65.4 97.1
IoU 89.5 74.2 37.4 49.3 63.7 96.5 87.3 36.5 88.7 51.0 92.3

TABLE V
CROSS-ENTROPY LOSS V.S IAL ON CAMVID AND CITYSCAPES OF MEAN GROUPS(%)

Dataset Camvid by ERF-PSPNet Cityscapes by BiERF-PSPNet
Group 3 2 1 Mean 3 2 1 Mean

Cross-Entropy
Precision 59.1 63.2 85.6 67.8 68.4 77.0 86.3 76.3

Recall rate 56.2 61.7 85.7 66.2 56.7 76.9 82.4 70.1
IoU 41.9 51.0 75.4 54.3 45.6 63.9 75.8 60.0

IAL
Precision 54.8 60.2 85.9 65.2 68.4 74.5 86.0 75.6

Recall rate 60.6 61.9 83.7 67.4 61.6 77.8 82.17 72.3
IoU 40.7 50.0 74.2 53.2 48.2 62.8 75.4 60.6

some categories’ precision and recall rate are quite high for
Cityscapes like pedestrians, cars and road. On the other hand,
the extra categories which do not belong to CamVid are
more important than them. Therefore, some categories need
to be attributed into different importance rank or else it may
lead to detrimental effect for training. For Cityscapes, we
regard traffic light, sign, rider, truck, bus, train, motorcycle,
bicycle as the most important classes, car, sidewalk, fence,
pole, pedestrian as the second important classes, and road,
building, wall, vegetation, terrain, sky as the least important
classes. We conduct a series of experiments by using ERF-
PSPNet and BiERF-PSPNet, both of them demonstrate the
effectiveness of IAL. Taking BiERF-PSPNet’s results as an
example, the results are filled in Table III to Table V. From
the results, what we can learn is that the IAL elevates the
important classes’ recall rates dramatically with few negative
effect on the precision.

The speed of ERF-PSPNet is 74.1fps when inputting a
360 × 720 image on a GTX 1080Ti GPU and BiERF-
PSPNet is 42.1fps. Their mIoU are 59.7 and 60.7 on

Cityscapes validation set, respectively. In other words, the
BiERF-PSPNet refine the spatial information by making a
sacrifice for inference time, while still keeping above real-
time inference.

However, surprisingly, a by-product of IAL, attracts our
interests, which is the promotion of the G1’s precision
on both datasets as displayed in Table II, Table IV and
Table V. In other words, when categorizing the classes into
three importance parts, although the original purpose is to
advance the recall rate of G3, the precision of G1 has been
advanced and even has a slight improvement on mIoU by
accident, which is of practical significance for autonomous
vehicles and other navigational assistant systems. We have
emphasized the importance of recall rate for autonomous
vehicles in Section I, but precision is another key point. In
comparison, regarding navigation assistance for the visually
impaired, we may underline the segmentation of sidewalks,
which should be segmented with high precision, because the
system must guarantee the visually impaired people navigate
on safe sidewalks, in case the road is detected as sidewalks



(a) Image (b) Label (c) Result of ERF-PSPNet (coarse) (d) Result of BiERF-PSPNet (fine)

Fig. 4. The result comparison between ERF-PSPNet and BiERF-PSPNet.

(a) Image (b) Label (c) Cross-entropy Loss (d) IAL

Fig. 5. The result comparison between Cross-entropy loss and IAL in CamVid.

(a) Image (b) Label (c) Cross-entropy Loss (d) IAL

Fig. 6. The result comparison between Cross-entropy loss and IAL in Cityscapes.

Fig. 7. Graphical illustration of the effect of IAL for G3. The blue area is
ground truth, the yellow are is the output of model trained by cross-entropy
loss, and the red area is the result of the model trained by IAL.

which will be dangerous for them.

D. Qualitative Analysis

The effect of BiERF-PSPNet can be shown in Fig. 4. We
find that the edge of objects is more accurate and refined
because of the spatial path of the BiERF-PSPNet, especially
at the edges of the pedestrians, riders, and some small and
slender objects like telegraph poles, which are very important
for safety-critical autonomous driving, as it is required to
perceive pedestrians and poles at long distances, in order to
take fast decisions in response to environmental events.

We find that IAL is of great effect in Fig. 5 and Fig. 6. In
Fig. 5 from CamVid, we find the output of the cross-entropy
loss ignores some pedestrians at further places and the
segmentation of the truck is fragmented bounded by white
boxes. But in the IAL’s output, the fragmentation of the truck
is refined, while the smaller pedestrians can be detected. Fig.
6 shows a representative example from Cityscapes, where
it is obvious that the IAL is highly effective successfully
to segment the bus and detect most of the poles while the
cross-entropy loss’s model segments part of the bus into car,
part of the bus into truck. Moreover, it misses some poles
as well. Therefore, we find our advanced IAL is not only
effective in CamVid but also practical in challenging large-
scale Cityscapes as well.

V. CONCLUSIONS AND FUTURE WORK

SS is promising for many tasks especially navigational
assistant systems like autonomous driving. As different ob-
jects possess different ranks of importance, the SS network
for autonomous driving should be addressed by a different
method, i.e., our revised IAL can yet be regarded as a
powerful technique. This paper re-design IAL so that the



loss function can make the training model focus on important
classes and advance the classes’ recall rate which will impose
dynamic weights adaptively. In addition, we adapt ERF-
PSPNet into BiERF-PSPNet for the sake of a finer spatial
result, while maintaining above real-time inference.

As a saying goes, every rose has its thorn. The revised
IAL can advance the recall rate of the important classes and
precision of the least important classes without damaging
the performance of the model, but it decreases the precision
of the important classes which may category other objects
into the important classes. Therefore, we summarize the
performance of IAL as the Venn Diagram shown in Fig.
7. For G3, IAL has a higher recall rate and lower precision
than cross-entropy loss, while keeping competitive mIoU. In
other words, training with IAL yields models which would
rather segment the important objects wrongly, than miss them
for safety considerations. In the future, we aim to further
optimize IAL and attempt to utilize new decision rules [24]
to let model to improve certain categories recall rate and
certain categories’ precision.
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