
Semantic perception of curbs beyond traversability for real-world
navigation assistance systems

Kailun Yang1, Luis M. Bergasa2, Eduardo Romera2, Dongming Sun3, Kaiwei Wang1 and Rafael Barea2

Abstract— Intelligent Vehicles (IV) and navigational assis-
tance for the Visually Impaired (VI) are becoming highly
coupled, both fulfilling safety-critical tasks towards the utopia
of all traffic participants. In this paper, the main purpose is to
leverage recently emerged methods for self-driving technology,
and transfer them to augment perception and aid navigation in
ambient assisted living. More precisely, we put forward to seize
pixel-wise semantic segmentation to support curb negotiation
and traversability awareness, along the pathway of visually
impaired individuals. At the crux of our perception unification
framework is an effort to attain efficient understanding by
proposing a deep architecture built on residual factorized
convolution and pyramidical representation. A comprehensive
set of experiments demonstrates the accurate scene parsing
results with promise of real-time inference speed. Crucially,
real-world performance over state-of-art approaches qualifies
the proposed framework for assistance when deployed to two
wearable navigation systems, including a pair of commercial
smart glasses and a prototype of customized device.

I. INTRODUCTION

Autonomous driving of Intelligent Vehicles (IV) and am-
bient assisted navigation of pedestrians are becoming tightly
intertwined [1] to optimize traffic flow. These two fields
confront the fundamental issues, precisely vehicular and
pedestrian safety towards the utopia of all traffic participants.
To this end, there is a necessity to expand the coverage of
assistance from drivers to pedestrians, especially those with
visual impairments, who are the most vulnerable road users.

Inspired by the synergy that semantic scene understanding
is crucial to enable safe vehicle navigation as well as to
enhance mobility of the Visually Impaired (VI) [2], a hotspot
has emerged over the past few years. It seeks to leverage the
striking advances in autonomous driving, and transfer them
to develop navigational assistive technologies [3][4] based
on such cross-domain transfer. Along this line, a large body
of researches focused on traversability perception [5][6] that
constitutes the backbone of any personal guidance system.
Beyond the proof-of-concepts established in these researches,
the community has also been motivated to provide assistive
awareness by integrating stairs detection and water hazards
detection [4] at the basis of traversability analysis. In spite of
the impressive strides towards higher independence of the VI,
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Fig. 1. Along the IV-VI cross-domain research line, this paper proposes to
aid in semantic perception of curb for the Visually Impaired (VI), in view
of the insufficient reconstruction approach for Intelligent Vehicles (IV).

curbs negotiation represents a challenging and so far largely
unexplored task.

As revealed by the field test of a previous work [4], navi-
gation on sidewalks and other walkways comprises a major
ingredient of the VI’s independent living, while suffering a
lot from negotiating curbs. More precisely, hazardous curbs
along these pathways, pose enormous threats for them dur-
ing everyday self-navigation, especially within metropolitan
areas. In order to close the gap and further enhance safety
beyond traversability awareness, we derive insight from the
field of IV given the following facts:

• Full pixel-wise semantic segmentation, as one of the
challenging vision tasks, aims to divide an image into
certain coherent semantically meaningful parts. Fueled
by deep learning, it has grown as the key enabler to
cover navigation-related tasks in a unified way [7][8].

• An even higher potency of Convolutional Neural Net-
works (CNNs) arguably lies in the capacity to learn
contexts and inter-relations. In our application domain,
curbs appearing between roadways and sidewalks is one
common property that is contextual information to be
exploited despite the inherent variance in shapes, sizes
and textures.

• Large-scale scene parsing datasets feature a high vari-
ability in capturing viewpoints (from road, sidewalks,
and off-road areas) [9], which offer a broad range of
images with assistance-related elements, supposing es-
sential prerequisites to aid perception in VI individuals.

Based on these observations, we propose to seize pixel-
wise semantic segmentation to support curb negotiation and
traversability awareness as depicted in Fig. 1. This paper in-
cludes corresponding key contributions shaping our approach
to this task, as well as novel results considerably extending
previous preliminary works [4][6]:

• A real-world perception framework that unifies the



Fig. 2. Overview of the wearable navigation system.

hazardous curb detecting and traversable area parsing.
• A real-time semantic segmentation network to learn

both global scene contexts and local textures without
imposing any assumptions, while achieving better per-
formance than traditional algorithms.

• A comprehensive set of experiments on two wearable
navigation systems including the commercial smart
glasses [10] and a highly customized prototype.

The remainder of this paper is structured as follows:
Section II reviews related work that has addressed both
traversability/curb detection and semantic segmentation for
the visually impaired. In Section III, the framework is
elaborated in terms of the perception system overview and
the semantic segmentation architecture. In Section IV, the
approach is evaluated and discussed as for real-time/real-
world performance by comparing with traditional algorithms
and state-of-art networks. Section V draws the conclusions
and gives an outlook to future work.

II. RELATED WORK

Traversability detection was addressed by a vital part
of proposals by adapting RANSAC algorithm to model the
ground plane [5][6]. However, real-world ground areas are
not always planar surfaces. Based on this knowledge, Stixel
World [11] marked a significant milestone for flexibly repre-
senting traffic situations including the free road space as well
as moving/static obstacles. On application side, possibilities
were explored to leverage the Stixel-based techniques for
self-driving cars, and adapt them into assistive technology for
the VI. To overcome the limitation of incompatible assump-
tions across application domains, [3] exploited 3D indoor
geometry to compute ground-to-image transformation, [2]
clustered the normal vectors in the lower half of the field
view, while [4] integrated IMU observations along with
vision inputs in a straightforward manner.

Curb reconstruction is another research topic to comple-
ment the Stixel-based representation with regard to the in-
sensitivity to low-height occurrence [12] as shown in Fig. 1.
LiDAR point cloud was incorporated to enhance vision-based
systems, aimed to achieve long-range curb detection, e.g.,
20m claimed in [13]. With the similar purpose, multi-cue
fusion [14] established boundary models of normal vector,
height and color respectively. While LiDAR-based results are
visually appealing, far-away information are less desired for
navigation assistance than nearby hazard awareness. Towards
this objective, the pioneering effort [15] demonstrated suffi-

cient evidence for the presence of curbs and steps in simply
one situation, forgetting to ensure the robustness across a
broad spectrum of real-world scenarios. In past years, the
proliferation of cost-effective depth sensors facilitated the
evaluation of pavement unevenness and terrain roughness by
computing surface normal vectors [16], which is arguably
more suitable than cost-prohibitive LiDARs for wearable
navigation systems. A more recent example could be [17],
which consolidated a wearable technology to negotiate sur-
face discontinuities using per-image classification. However,
in complex urban areas, reliability of these systems are heav-
ily influenced by the diverse street configurations, different
materials/textures and illumination variations, let alone the
viewpoint changes imposed by the wearable devices.

Semantic segmentation becomes visible and viable as an
extremely powerful approach to provide a reliable generaliza-
tion capacity with dense per-pixel predictions. However, the
topic to leverage pixel-wise semantic segmentation to assist
the visually impaired has not been practically studied. For
prosthetic vision, a computer system [18] was reported to aid
in obstacle avoidance through semantic labeling. Although
related, the produced stimulation pattern can be thought of
as a low resolution, low dynamic range, distorted image,
which is insufficient for our task. Another piece of related
work [19] has been recently presented to identify the most
walkable direction for outdoor navigation. While inspiring,
this work focused on the tracking of a safe-to-follow object
by providing only sparse bounding-box semantic predictions,
and hence cannot be directly used for upper-level reasoning
tasks. Although sporadic efforts have been made along this
line, these approaches are unable to run in real time, which
is a critical issue for blind assistance. Additionally, they have
not been thoroughly tested in the real world. Based on this
notion, we attempt to customize real-time semantic segmen-
tation unifying the perception of hazardous curbs beyond
traversability, and offer an in-depth evaluation, focusing on
a numerical analysis of real-world performance, followed by
qualitative results as well as discussions.

III. APPROACH

A. Perception Framework Overview

To make the following explanations clear, we adopt the
pair of smart glasses [10] worn by the user (see Fig. 2)
as an instance. It is a commercialized product that aids
obstacle avoidance during indoor/outdoor navigation, which
is widely used in China by visually impaired pedestrians.



Following the trend of using head-worn glasses [6] to acquire
environment information and interact with visually impaired
pedestrians, we also design a customized prototype as shown
in Fig. 3, which is comprised of a stereo camera attached
with polarization filters [4]. In this work, the polarimetric
information are not used so as to achieve a fair comparison
with the smart glasses. The pair of glasses captures real-
time RGB-D streams and transfers them to the processor,
while the RGB images are fed to the network for pixel-wise
semantic segmentation. As for the depth images, which are
acquired with the combination of active speckle projecting
and passive stereo matching, they enable a higher level of
3D pointcloud-based obstacle avoidance [6] that is robust
yet insensitive to low-height hazardous curbs. Comparatively,
for the customized prototype, the depth information are gen-
erated through purely large-scale stereo matching, designed
originally for water hazard segmentation [4].

Fig. 3. The customized prototype.

For both navigation assistance systems, results regarding
traversability awareness and curbs detection are determined
by directly using the semantic segmentation output as the
base for upper-level assistance, with which feedback are
delivered through the bone conducting earphones. This is
important as visually impaired pedestrians need to continue
hearing environmental sounds when navigating different
walkways and the bone conducting interface allows them
to hear a layer of augmented acoustic reality that is super-
imposed on the environmental sounds, which are expected
by the users to perceive the existence and direction of curbs,
such that hazardous situations could be avoided or they could
safely walk along the sidewalk.

B. Real-time semantic segmentation architecture

Up until very recently, the applicability of per-pixel se-
mantic scene parsing is questioned due to speed. How-
ever, efficient semantic segmentation has been a heavily re-
searched topic over the last two years, with the emergence of
deep architectures [7][20][21] that could fulfill full segmen-
tation in soft real time. These advances have empowered the
utilization of semantic segmentation in time-critical applica-
tions like navigation assistance. In this research, to leverage
the success in segmenting a broad spectrum of scenes and
speeding up for semantic perception, the architecture is
designed according to the SegNet-based encoder-decoder
architectures like ENet [20] and our previous ERFNet [7].
In FCN-like architectures, featuremaps from different layers
need to be fused to generate a fine-grained output. As
expanded in Fig. 4, our approach in contrast uses a more

sequential architecture based on an encoder producing down-
sampling featuremaps, and a subsequent decoder that up-
samples featuremaps to match input resolution. Table I also
gives a detailed description of the integrated architecture.
In general, the residual layer adopted in current networks
has two instances: the bottleneck version and the non-
bottleneck design. Based on 1D spatial factorizations of the
convolutional kernels, “Non-bottleneck-1D” (non-bt-1D) was
redesigned as an alternative residual layer in our previous
work [7], successfully striking a rational balance between
the efficiency of bottleneck and the learning capacity of
non-bottleneck. Thereby, in order to extract featuremaps,
an efficient use of minimized amount of residual layers is
enabled with a maximized trade-off between inference speed
and segmentation accuracy.

TABLE I
LAYER DISPOSAL OF OUR PROPOSED NETWORK.

“OUT-F”: NUMBER OF FEATURE MAPS AT LAYER’S OUTPUT,
“OUT-RES”: OUTPUT RESOLUTION FOR INPUT SIZE OF 640×480.

Layer Type Out-F Out-Res

E
N

C
O

D
E

R

0 Scaling 640×480 3 320×240
1 Down-sampler block 16 160×120
2 Down-sampler block 64 80×60

3-7 5×Non-bt-1D 64 40×30
8 Down-sampler block 128 40×30
9 Non-bt-1D (dilated 2) 128 40×30

10 Non-bt-1D (dilated 4) 128 40×30
11 Non-bt-1D (dilated 8) 128 40×30
12 Non-bt-1D (dilated 16) 128 40×30
13 Non-bt-1D (dilated 2) 128 40×30
14 Non-bt-1D (dilated 4) 128 40×30
15 Non-bt-1D (dilated 8) 128 40×30
16 Non-bt-1D (dilated 2) 128 40×30

D
E

C
O

D
E

R

17a Original featuremap 128 40×30
17b Pooling and convolution 32 40×30
17c Pooling and convolution 32 20×15
17d Pooling and convolution 32 10×8
17e Pooling and convolution 32 5×4
17 Up-sampler and concatenation 256 40×30
18 Convolution C 40×30
19 Up-sampler C 640×480

However, for robust segmentation of street-level scene
elements such as hazardous curbs and sidewalks, we attach
a different decoder with respect to the previous work. This
critical modification helps to collect more contextual infor-
mation while minimizing the sacrifices of learning textures.
Global context information is of cardinal significance to
aid navigation at complex metropolitan areas. Detailedly,
two common issues are worthwhile to highlight for context-
critical blind assistance. Firstly, context relationship is uni-
versal, especially for street-level scene understanding. If the
network mis-predicts curbs on crosswalks, the VI would
be left vulnerable in the dynamic environments given such
feedback. The prior knowledge should be learned by the
data-driven approach that curbs are seldom over crosswalks.
Secondly, when navigating the sidewalks or crossing the
roads, the scene elements such as crosswalks, crossing lights,
pedestrians, vehicles and the hazardous curbs will exhibit
arbitrary sizes observed from the sensor perspective. Naviga-
tion assistance system should pay a lot attention to different
sub-regions that contain inconspicuous-category stuff.

Learning more relationship between scene categories by



(a) (b) (c) (d)

Fig. 4. The proposed architecture. From left to right: (a) Input, (b) Encoder, (c) Decoder, (d) Prediction.

exploiting more context is a promising approach to mitigate
these risks. Bearing the goal of helping VI pedestrians in
mind, the reconstruction of the decoder architecture follows
the pyramidical pooling module as introduced by PSP-
Net [22]. This module is leveraged to harvest different sub-
region representations, followed by up-sampling and con-
catenation layers to form the final feature representations. In
this manner, local and global context information are carried
from the pooled representations at different locations. By
fusing features under a group of different pyramid levels, the
output of different levels in this pyramidical pooling module
contains the featuremap from the encoder with varied sizes.
With the aim of maintaining the weight of global feature,
a convolution layer is appended after each pyramid level to
point-wisely reduce the dimension of context representation
to 1/N of the original one if the level size of the pyramid
level is N. As for the situation in Fig. 4c, the level size N
equals to 4 and we decrease the number of featuremaps from
128 to 32. Subsequently, the low-dimension featuremaps are
directly up-sampled to retrieve the same-size features as the
original featuremap through bilinear interpolation. Overall,
Fig. 4 contains a depiction of the featuremaps generated by
each of the block in our architecture, from the RGB input to
the pixel-level class probabilities and final prediction.

IV. EXPERIMENTS

Experiments setup. The experiments are performed in
public spaces around Westlake, the Yuquan Campus and the
City College at Zhejiang University in Hangzhou, and the
Polytechnic School at University of Alcalá in Madrid. We
captured metropolitan scenes using two wearable navigation
systems including the smart glasses commercially available
at [10], and the customized prototype that was also previ-
ously used in [4] to detect water puddles by incorporat-
ing per-pixel polarimetric measurements. To facilitate fair
comparison, polarization information are not used in this
work. In this fashion, a real-world egocentric vision dataset
is collected, which has 100 images across various scenarios
with pixel-wise ground truth including 50 images captured
by the glasses and 50 images captured by the prototype.

This allows us not only to evaluate on the challenging large-
scale Mapillary dataset [9], but also to analyze real-world
performance using the curbs dataset that can be accessed
at [24]. The metrics in this paper correspond to Intersection-
over-Union (IoU) and Pixel-wise Accuracy (P-A) that are
prevailing in semantic segmentation challenges.

Real-time performance. The total computation time for
a single frame at the resolution depicted in Fig. 4/Table I is
13ms, mostly on semantic segmentation. In this sense, the
computation cost is saved to maintain a reasonably qualified
refresh-rate of 76.9FPS on a processor with a single cost-
effective GPU GTX1050Ti. This inference time demonstrates
that it is able to run our approach in real time, while allowing
for additional time for acoustic feedback [4][6]. In addition,
on an embedded GPU Tegra TX1 (Jetson TX1) that enables
higher portability and consumption of less than 10 Watts at
full load, our approach achieves approximately 22.0FPS.

Training setup. The challenging Mapillary Vistas
dataset [9] is chosen as it consists of many traversability-
related object classes including curbs, spanning a broad range
of outdoor scenes on different roadways or sidewalks, which
corresponds to the deployment scenario of both navigation
assistance systems. Additionally, it attains vast geographic
coverage, containing images from different continents. This
is important to enhance reliability because curbs are not
exactly the same in different streets and countries [13]. In
total, we have 18000 images for training and 2000 images for
validation with pixel-exact annotations. To provide awareness
regarding the scenes that visually impaired people care the
most during self-navigation, the training involves 27 classes,
including the most frequent classes and some traversability-
related classes. These 27 classes cover 96.3% of labeled
pixels, which still allows to fulfill semantic scene parsing.
To robustify the model against the varied types of images
from real world, a set of data augmentations are performed
including horizontally mirroring with a 50% chance, jointly
use of random cropping and scaling to resize the cropped
region into 320×240 input images. Particularly, random
rotation by sampling distributions from the ranges [−20o,
20o], color jittering from the ranges [-0.2, 0.2] for hue, [0.8,



TABLE II
ACCURACY ANALYSIS.
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ENet [20] 24.97% 71.16% 82.54% 57.20% 32.95% 75.97% 32.60% 96.39% 81.13% 52.85% 50.99% 59.89% 33.59%
LinkNet [21] 34.55% 74.41% 83.95% 58.22% 37.06% 78.16% 42.27% 97.16% 83.25% 54.88% 51.87% 63.25% 39.39%
ERF-PSPNet 37.06% 75.92% 85.92% 65.14% 42.92% 80.52% 49.93% 96.47% 84.06% 60.09% 59.97% 67.09% 48.85%

(a) On Mapillary dataset [9] using Intersection-over-Union (IoU).
“Mean-11”: mean IoU value of 11 navigation-related classes, “Mean-27”: mean IoU value of all 27 classes used for training.

Approach Navigation System All Pixels With Depth Within 2m 2-3m 3-5m 5-10m

3D-RANSAC-F
Smart Glasses 63.34% 67.16% 25.14% 95.67% 92.73% 54.75%

Customized Prototype 80.88% 88.50% 91.13% 94.34% 92.70% 77.41%
In Total 75.64% 82.68% 87.21% 94.55% 92.70% 70.21%

FreeSpaceParse
Smart Glasses 80.63% 81.11% 88.93% 86.98% 91.31% 78.38%

Customized Prototype 86.52% 87.52% 69.11% 93.44% 92.35% 83.29%
In Total 84.76% 85.77% 70.29% 92.45% 92.04% 81.73%

ENet
Smart Glasses 74.84% 75.14% 80.88% 64.42% 73.29% 78.00%

Customized Prototype 93.26% 93.62% 93.43% 93.89% 94.74% 92.21%
In Total 87.76% 88.58% 92.69% 89.36% 88.40% 87.70%

LinkNet
Smart Glasses 93.14% 92.76% 97.27% 95.20% 93.65% 92.63%

Customized Prototype 93.28% 93.47% 93.62% 92.59% 93.40% 95.03%
In Total 93.24% 93.28% 93.84% 92.99% 93.47% 94.27%

ERF-PSPNet
Smart Glasses 96.86% 96.59% 99.58% 99.04% 98.43% 96.68%

Customized Prototype 97.32% 97.55% 97.40% 97.73% 98.34% 96.34%
In Total 97.18% 97.29% 97.53% 97.93% 98.36% 96.45%

(b) On Real-world Curbs Dataset [24] in terms of traversable area detection using Pixel-wise Accuracy (P-A).
“With Depth”: Only the pixels with valid depth information are evaluated.

Network Navigation System All Pixels With Depth Within 2m 2-3m 3-5m 5-10m

ENet
Smart Glasses 32.28% 33.59% 5.14% 7.83% 26.99% 20.92%

Customized Prototype 53.22% 53.86% 44.53% 52.00% 50.57% 69.95%
In Total 46.47% 47.56% 42.96% 50.53% 41.50% 45.87%

LinkNet
Smart Glasses 31.06% 32.98% 1.90% 11.88% 17.42% 47.39%

Customized Prototype 49.37% 50.14% 59.02% 36.66% 56.74% 69.44%
In Total 43.07% 44.80% 56.74% 35.83% 41.62% 58.61%

ERF-PSPNet
Smart Glasses 79.11% 78.88% 66.90% 78.46% 82.26% 82.24%

Customized Prototype 76.57% 77.66% 72.20% 73.38% 77.98% 89.16%
In Total 77.38% 78.04% 71.99% 73.55% 79.63% 85.76%

(c) On Real-world Curbs Dataset [24] in terms of curbs detection using Pixel-wise Accuracy (P-A).

1.2] for brightness, saturation and contrast are also applied.
Our model is trained using Adam optimization, initiated
with a batch size of 15 and a learning rate of 5×10−5 that
decreases exponentially across epochs. Following the weight
determining scheme in [20] and the pre-training setup in [7],
the training of the full network reaches convergence when
focal loss [23] is adopted as the criterion:

Focalloss =
W∑
i=1

H∑
j=1

N∑
n=0

(1−P(i,j,n))
2L(i,j,n)log(P(i,j,n)) (1)

where P is the predicted probability and L is the ground
truth. The scaling factor (1 − P(i,j,n))

2 suppressed heavily
the loss contribution of correctly-segmented pixels (when
P(i,j,n) = 0.9, (1−P(i,j,n))

2=0.01). Comparatively, it sup-
pressed lightly the loss contribution of wrongly-segmented
pixels (when P(i,j,n) = 0.1, (1 − P(i,j,n))

2=0.81). In this
way, the focal loss concentrates the training on wrongly-
segmented pixels or hard pixels. We found this setting
yields better results than conventional cross-entropy loss
on Mapillary dataset, as it contains some less-frequent yet
important classes such as traffic lights and hazardous curbs.

Segmentation accuracy. The accuracy of semantic seg-
mentation is firstly evaluated on the challenging Mapillary
dataset [9] by comparing the proposed ERF-PSPNet with
CNNs in the state of the art including ENet [20] and
LinkNet [21]. Table II(a) details the accuracy of 11 main
navigation-related classes and the mean IoU values. It could
be told that the accuracy of most classes obtained with the

proposed ERF-PSPNet exceeds the existing architectures that
are also designed for real-time applications. Our architecture
has the ability to collect rich contextual information without
major sacrifice of learning from textures. Accordingly, only
the accuracy of sky is slightly lower than LinkNet, while
most important classes for traversability awareness are both
higher including road, sidewalk, curb, terrain and crosswalk.
For other less frequent pathways, our approach also yields
decent IoU value, e.g., bike lane (35.98%).

Real-world traversable area parsing. To analyze the
major concern of detection performance for traversability
awareness, we compare the traversable area parsing of our
ERF-PSPNet to a traditional algorithm 3D-RANSAC-F [5],
a Stixel-level segmentation pipeline FreeSpaceParse [3], as
well as state-of-art architectures including ENet and LinkNet.
Here, the traversable area involves road and sidewalk, exclud-
ing hazardous curbs. The pixel-wise accuracy on the real-
world curbs dataset [24] over several ranges are collected:
0-2m, 2-3m, 3-5m and 5-10m, taking into account that
short-range of ground area detection helps to determine the
most walkable direction [4][19], while superior path planning
could be supported by longer traversability awareness [6].

As manifested in Table II(b), 3D-RANSAC-F and
FreeSpaceParse are based on depth segmentation by using
the dense disparity map, which achieve decent accuracy be-
tween 2-5m because depth estimations within this range are



(a) Prototype (b) RGB (c) Depth (d) Annotation (e) 3D-R-F (f) FSP (g) ENet (h) LinkNet (i) Our approach
Fig. 5. Qualitative examples of the segmentation on real-world images produced by our approach compared with ground-truth annotation, 3D-RANSAC-F
(3D-R-F) [5], FreeSpaceParse (FSP) [3], ENet [20] and LinkNet [21]. From left to right: (a) Wearable navigation system including the commercial smart
glasses [10] and our customized prototype [4], (b) RGB image, (c) Depth image, (d) Annotation, (e) 3D-RANSAC-F (3D-R-F), (f) FreeSpaceParse (FSP),
(g) ENet, (h) LinkNet, (i) Our approach.

quite dense with high degree of confidence. It is noteworthy
that these two approaches both achieved higher accuracy with
the customized prototype than the smart glasses. Admittedly,
as depth information of the ground area captured with the
smart glasses may be noisy and missing in dynamic environ-
ments, we implemented a RGB image guided filter [6] to fill
holes before detection. However, the pair of smart glasses is
designed to enable obstacle avoidance across indoor/outdoor
environments through projected IR-texture stereo perception.
While robust, its depth accuracy is less accurate in outdoor
environments than the customized prototype using purely
RGB stereo matching with longer baseline. This explains
the accuracy gap between the glasses and the prototype.

As far as the deep learning-based approaches are con-
cerned, they have the crucial advantages by exploiting a sig-
nificant amount of data, thus eliminating the dependencies on
assumptions. Since RGB-based segmentation is independent
of depth information, there should be no significant differ-
ence between different navigation systems. Results collected
with LinkNet and our ERF-PSPNet are as expected, and our
approach outperforms them on both ranges, yielding high
pixel-wise accuracy more than 97%. However, the accuracy
gap still exists for ENet, because it suffers from limited
learning capacity to generalize well in real world.

Real-world curbs detection. For the visually impaired, it
is preferred to know that there are risks in some direction
even if the per-pixel distinction is not exactly accurate. In
this sense, the curbs segmentation results are still of great
use even though they are less accurate than traversable area
parsing. Interestingly, we observe a positive correlation be-
tween distance and accuracy obtained with our ERF-PSPNet

in Table II(c). This is related to the Mapillary dataset used for
training, in which most curbs are relatively farther regardless
of viewpoints. However, such positive correlation does not
hold for ENet and LinkNet, which reveals that LinkNet still
suffers from limited capacity when learning/inferring less
frequent scene classes. It is worthwhile to note the accuracy
obtained with the smart glasses are slightly higher than that
achieved with the customized prototype, because the aspect-
ratio of images used for training is closer to aspect-ratio of
images captured by the smart glasses than those from the
prototype as displayed in Fig. 5, which may slightly bias the
appearances of curbs to be analyzed, even though a group
of data augmentations have already be performed. Still, our
approach excels ENet and LinkNet, and in their cases, the
accuracy obtained with the prototype are higher than the
results of the glasses. This is mainly due to the low accuracy
values at closer ranges (see Table II(c)), and the depth range
of the smart glasses has been specially decreased to enhance
obstacle avoidance as analyzed in [25]. It also implies that
when the capacity is limited, less information are learned
from the less-frequent classes than dominating traversable-
area classes. In addition, our approach has the ability to
gather diverse levels of context in the last layers, which
also helps to learn from the close-range information that
covers large portion of the image and requires the model to
collect more contextual information for robust classification.
In this regard, our approach is very suitable for navigation
assistance because close-range hazard awareness is critical
for the VI’s safety, e.g., warnings of curbs within 3m given
the height of head-worn devices. Fig. 5 exhibits the montage
of pixel-wise results generated by our approach, LinkNet,



ENet, FreeSpaceParse and 3D-RANSAC-F. Qualitatively,
our approach not only yields longer and more consistent
segmentation which will definitely benefit the traversability
awareness, but also retains the outstanding ability to perceive
hazardous curbs within this framework.

V. CONCLUSIONS

Navigation assistance at metropolitan areas for the Visu-
ally Impaired (VI) is a necessary step to reach an optimal
level of traffic flow, which will as well contribute to the im-
provements of transportation and vehicular safety. In support
of that goal, we derive achievability results for perception of
curbs and traversability by leveraging semantic segmentation,
which has also played an important role in autonomous
driving of Intelligent Vehicles (IV). The proposed approach
has been evaluated on a large-scale challenging dataset and
an ego-centric dataset, demonstrating the effectiveness in
real-world assistance on two navigation systems.

We are aware of the plenty of room to further reinforce
the robustness in unseen domains, and a field test with
real VI users would garner more credibility. In the future,
data augmentations and hierarchical structures would be
analyzed in a systematic way on next generation of wearable
prototypes that support higher portability, larger field of
view and denser RGB-D perception, such that the framework
would be ready for deployment in complex traffic situations.
In addition, the navigational assistive framework would be
incessantly enriched by chaining multi-sensor visual SLAM
and life-long topological localization.
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