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Abstract—On the off-the-shelf navigational assistance devices,
the localization precision is limited to the signal error of global
navigation satellite system (GNSS). During travelling outdoors,
the inaccurately localization perplexes visually impaired peo-
ple, especially at key positions, such as gates, bus stations or
intersections. The visual localization is a feasible approach to
improving the positioning precision of assistive devices. Using
multiple image descriptors, the paper proposes a robust and
efficient visual localization algorithm, which takes advantage
of priori GNSS signals and multi-modal images to achieve the
accurate localization of key positions. In the experiments, we
implement the approach on the wearable system and test the
performance of visual localization under practical scenarios.

I. INTRODUCTION

In the world, around 253 million people live with vision
impairments [1]. Navigational assistance is one of crucial de-
mands for visually impaired people in their daily life. Thanks
to the booming smart phones and mobile Internet, visually
impaired people are easy to get access to the off-the-shelf
navigational applications, which rely merely on the GNSS
(Global Navigation Satellite System) signal. Generally, the
localization error of GNSS is more than several meters under
ordinary conditions, and is up to dozens of meters under severe
weather conditions. In terms of the off-the-shelf navigational
assistance, the positioning precision is insufficient. Imagining
a person with visual impairments standing at the vicinity of
a turning, it is tough for her or him to locate where should
be the exact position to take a turn relying merely on GNSS
localization. Therefore, applying a localization approach with
less error to the practical navigational assistance is of vital
importance for alleviating the underlying hazards caused by
inaccurate positioning.

There were different sorts of non-visual localization utilized
in the assistive navigation for the visually impaired, such as
RFID (Radio Frequency IDentification) technology [2] or WiFi
localization [3]. Nevertheless, plenty of RFID or WiFi tags
have to be deployed at key positions to achieve the ubiquitous
navigation. In contrast, visual localization based on GNSS
signal is a more feasible approach.

In this paper, we propose a robust and real-time visual
localization approach based on the multiple descriptors of
multi-modal images and the GNSS signal. Shown as Fig. 1,
the proposed key position localization approach involves a
priori database containing images and GNSS positions, query

Fig. 1. General block diagram of the proposed framework for visual
localization of key positions.

images and GNSS positions, as well as key position prediction
fusing image with GNSS. As a coarse localization, GNSS
signals are utilized to shrink the retrieval range of images.
Visual localization is arguably a fine-tuned localization, which
promotes localization precision by retrieving best matching
query images from database.

Composed of GNSS signals and multiple descriptors, a
traversed trajectory is recorded in the database, where key
positions and non-key positions are both included. The GNSS
signal consists of the coordinate of longitude and latitude. Key
positions denote the positions which the visually impaired user
attaches the importance to, such as turnings, gates, barriers,
bus stations, as well as trees on the roads, etc. At the key
positions, the user is required to turn around, so as to capture
scenes with different views in addition to the frontal view.
The non-key positions are the rest positions in the traversed
trajectory, where only frontal view images are recorded.

When the visually impaired user traverses the recorded
trajectory again, the multiple image descriptors of the query
images as well as the GNSS position are fused together to find
the nearest positions from the database. Then, the algorithm
draws the conclusion whether the current position is a pre-
labeled key position.

Due to the changing pose of the wearable device, the
captured images, including both database images and query
images, are not as stable as those captured from the camera
mounted on robots or vehicles. In assistive navigation, the



difficulty of visual localization lies in the pose variance
between database images and query images, so the multiple
descriptors extracted from multi-modal images are utilized to
depict scenes better. Different from the visual localization or
place recognition in the application of intelligent vehicles,
there is no public dataset suitable for the blind assistance.
Therefore, the main contributions of our work are fourfold:

• A real-world visual localization on a wearable devices
specially designed for people with impaired vision.

• Higher localization accuracy compared with GNSS posi-
tioning approaches.

• Real-time response on the limited wearable platform that
qualifies the navigational assistance.

• A challenging dataset containing multi-modal images and
GNSS signal for visual localization in the area of blind
assistance.

II. RELATED WORK

The community of assistive navigation achieved different
localization solutions, which are applied to various scenarios
of navigational assistance. In order to inform the visually
impaired with ambient objects, Mekhalfi et al. [4] proposed a
multi-label scene recognition algorithm based on compressive
sensing, which achieves considerable localization accuracy for
the scenes once visited. Nevertheless, the compressive sensing
has high computational complexity, hence it is not suitable
for real-time application. Nguyen and Tran [5] proposed a
scene description based on GIST features and kNN (k-Nearest
Neighbor), which classifies query images into key scenes that
are visually different. However, the number of classes is too
small to enable precise localization. Moreover, appearance
variance is not considered in capturing training and testing
data, so that robustness is not guaranteed. Ivanov [6] proposed
an indoor navigation system, which requires building floor
plans. Fusco et al. [7] proposed a self-localization approach
based on a street-view panorama and an aerial image. The
algorithm locates the visually impaired by extracting crosswalk
stripes from both of images, so it is only valid at street
intersections. Therefore, to the best of our knowledge, none
of visual localization solutions aims or manages to promote
the navigational precision outdoors.

The community of intelligent transportation achieved dif-
ferent kinds of visual localization algorithms, which are also
called topological localization or place recognition. For au-
tonomous vehicles, Arroyo et al. [8] implemented a visual lo-
calization algorithm which is based on LDB (Local Difference
Binary) descriptor. However, the algorithm is sensitive to the
pose and FOV (Field Of View) of camera, which is hard to be
maintained stable on wearable devices. Tian et al. [9] proposed
a visual localization approach based on GNSS information and
birds eye view images. Obviously, the birds eye view images
are not available in assistive navigation.

The evaluation of the visual localization algorithms relies on
public datasets, such as KITTI [10] and CMU CVG VL [11]
etc. Unfortunately, these datasets are not designed for assistive
navigation. In our cases, the constantly varying camera pose,

which is caused by user movement, results in motion blur and
diverse FOVs among the database and query images.

III. VISUAL LOCALIZATION

In order to achieve a satisfactory localization performance,
it is of vital importance to depict the scenes comprehensively.
For the sake of it, not only are the multi-modal images
captured to enrich the input information, but also both holistic
and local descriptors are utilized to represent the images.
The multi-modal images used in this paper are RGB images,
infrared images and depth images. Representing the holistic
scene, GIST descriptor is used to alleviate the impact of
scene changes, e.g. people, cars or luminance etc. Besides,
BoW (Bag of Words) based on the local descriptor is used
complementarily for describing image details. As a feature
that performs well in multi-modal images, LDB is used to
promote the matching robustness by synthesizing multi-modal
images.

A. GIST Descriptor

Instead of depicting image by local key points, GIST
descriptor [12], [13] serves as a holistic representation of the
scene. As shown in Fig. 2, the extraction procedures of GIST
descriptor involve image normalization, Gabor filtering and
response averaging. First of all, the image variance caused
by different illuminations is ameliorated by applying whiten-
ing and local contrast normalization to original images [see
Fig. 2 (a) and (b)]. Then, Gabor responses are obtained and
down-sampled by using several Gabor filters with different
orientations and scales [see Fig. 2 (c)]. Finally, the responses
are concatenated together to generate the GIST descriptor
[see Fig. 2 (d)]. In the paper, we use up to 20 Gabor filters
belonging to 3 different scales, and the quantity of orientations
in each scale (from large to small) is 8, 8 and 4 respectively.
The number of blocks is set to 16, which means each Gabor
response image is down-sampled to 4×4. Thereby, by merging
all of the responses together, the size of final GIST descriptor
is up to 320.

B. LDB Descriptor

Yang and Cheng [14] proposed LDB descriptor, which is
highly efficient and sufficiently distinctive. Arroyo et al. [8]
utilized concatenated LDB descriptor which is extracted from
multi-modal images (RGB image, gradient image and disparity
image) to achieve visual localization. In our work, three LDB
descriptors are extracted from the RGB, depth and infrared
images respectively, and are concatenated to form a com-
pounded LDB descriptor, shown as Fig. 3. Before extracting
LDB descriptor from RGB images, illumination invariance
transformation is applied to improve the robustness under the
condition of changing lighting [8].

C. BoW Descriptor

Originated from text analysis, BoW is widely applied in
object and scene categorization, due to its simplicity, compu-
tational efficiency and invariance to affine transformation [15].



Fig. 2. GIST descriptor extraction procedures. (a) Input image. (b) Nor-
malized image. (c) Visualization of down-sampled Garbor responses, where
different colors denote different scales. (d) GIST descriptor.

Fig. 3. LDB descriptor extraction procedures. The input images are composed
of RGB, depth and infrared images (from left to right in the first row).
Illumination invariance transformation is applied to RGB image, then LDB
descriptors are extracted from each image and concatenated together to form
the final LDB descriptor.

Galvez-Lpez and Tardos [16] proposed a BoW-based place
recognition approach, which is widely used in the loop closure
of simultaneous localization and mapping. Different from
holistic GIST descriptor, BoW descriptor, arguably a further
abstraction of local features, represents the scene details to
some extent.

To balance computational efficiency and affine invariance,
ORB (Oriented FAST and Rotated BRIEF) [17] is chosen
as the local feature of BoW. The key points are extracted
by FAST (Features from Accelerated Segment Test), and
described by rotated BRIEF (Binary Robust Independent Ele-
mentary Features) [see Fig. 4 (b)]. The ORB descriptors of all
key points are merged together and compose the concatenated
descriptors [see Fig. 4 (c)]. Subsequently, the BoW descriptor
[see Fig. 4 (d)] is generated using the ORB descriptor and pre-
trained vocabulary [18], in which visual words are clustered
to form a hierarchical tree using massive ORB descriptors of

Fig. 4. BoW descriptor extraction procedures. (a) Input image. (b) Images
with FAST key points (blue circles) and rotated BRIEF feature of one key
point (blue barcode). (c) ORB features of input images. (d) BoW vector of
input image with word ID and its value.

training images. In view that the ORB vocabulary used in the
paper is trained by gray-scale image (derived from the RGB
image) and rare key points are extracted in depth and infrared
image, BoW descriptor is only applied to RGB images.

D. Key Position Prediction

When traversing a trajectory at the first time, the multiple
image descriptors (GIST, LDB and BoW) with corresponding
GNSS signals are recorded as database (e.g. trajectory 1 in
Fig. 5), where different views of images at a key positon are
captured as many as possible. During traversing the trajectory
again (e.g. trajectory 2 in Fig. 5), kNN algorithm is used
to find the matching results from the database based on the
query image descriptor and GNSS signal, thus the key position
localization is decided by the labels of the matching images.
Serving as a coarse localization, the query GNSS coordinate
is utilized to constrain the range of image retrieval. Only
database images whose GNSS coordinate is within the range
r of the query GNSS coordinate (e.g. the green points within
the red circle in Fig. 5) are taken as candidates to be matched.

The similarity of the query image and the filtered database
images is measured by different distances of images descrip-
tors. Euclidean distance and Hamming distance [8] are applied
to match GIST descriptors and LDB descriptors respectively.
The distances between BoW descriptors are measured with
L1-score [16]. The dimensions of GIST and LDB descriptor
are limited, so brute force matching is utilized to find the
kGIST nearest neighbors of GIST and kLDB nearest neighbors
of LDB. However, the dimension of BoW is large, hence
inverse index of vocabulary tree is used to quickly access
the kBoW nearest neighbors [16]. The kNN matching results
of the query image are attained by incorporating all nearest
neighbors of GIST, LDB and BoW descriptor. The number
of matching images selected from the database is up to
k = kGIST +kBoW +kLDB . If the number of images that are



Fig. 5. The flow chart of key position prediction using the multiple image
descriptors and GNSS signals.

Fig. 6. (a) Intoer: the wearable navigational devices for visually impaired
people. (b) A user is wearing Intoer.

labeled as key position out of matching images exceeds the
threshold n, the query position is predicted as a key position.

IV. EXPERIMENTS AND DISCUSSIONS

In order to achieve navigational assistance for people with
visual impairments, we developed a wearable assistive system
Intoer [19], which is comprised of the multi-modal camera
RealSense [20], a customized portable processor with GNSS
module, and a pair of bone-conduction earphones [21], as
shown in Fig. 6. Based on the system, we have achieved
various assistive utilities, including traversable area and hazard
awareness [22], crosswalks and traffic lights detection [23],
[24] etc. Using the wearable system Intoer, we capture real-
world scenes to build a challenging dataset, which consists
of a series of time-ordered multi-modal images and GNSS
signals [25]. The capture interval of two successive frames
is one second. The resolutions of multi-modal images are set
to 320×240. The real-world dataset features illumination and
pose variances between database images and query images.

A. Localization Precision of Different Descriptors

The index difference between the matching result and
the ground truth reflects the localization precision, since
the database is recorded in time order and the successive
data are with adjacent indexes. For each image descriptor,
the minimal index difference among the nearest neighbors
quantifies the performance of that descriptor. As a criterion of

descriptor performance, full trajectory error is the mean value
of minimal index differences throughout the full trajectory.
Another criterion is sensitivity, which is the ratio of matched
query images number to all query images number. Thereby, in
order to validate the adopted image descriptors (GIST, LDB
and BoW), we test those descriptors on the our dataset and
compare them with CS (Compressive Sensing). Transforming
high-dimensional images into low-dimensional descriptors, CS
achieves sparse representation of the original image. In this
paper, we use CoSaMP (Compressive Sampling Matching
Pursuit) [26] to extract the sparse descriptor of image.

The comparison experiment is carried out on a 150-meter
long route of the dataset, which comprised of a database
trajectory with 142 multi-modal images and GNSS signals and
two query trajectories. TABLE I gives the full trajectory error
and sensitivity of different descriptors on different multi-modal
image combinations, when kGIST = kBoW = kLDB = 5 and
r = 0.02. Local descriptor BoW on RGB image achieves the
best performance among all descriptors, in view of the lowest
error and the highest sensitivity. Meanwhile, holistic GIST
descriptor on RGB images has lower error and considerable
sensitivity compared with GIST extracted from other images.
Both GIST and BoW are vulnerable to changing illumination,
while LDB descriptor performs stable under the circumstance,
hence LDB that extracted from RGB-IR-D images is also
chosen in this paper. CS descriptor is not considered in this
paper, because of its highly computational complexity and low
robustness.

B. Performance of Key Position Prediction

Using the experimentally validated image descriptor con-
figuration, we test the precision and recall of key position
prediction on a 400-meter route of the dataset, where three
query trajectories correspond to one database trajectory fea-
turing 291 multi-modal images and GNSS signals. According
to the key position prediction results of all query images, we
count the total number of true positives, false positives and
true negatives, and define them respectively as TP, FP and
FN. Herein, precision and recall are defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

On one of query trajectories, a grid search is executed to
find the optimal values of parameters, including the number of
nearest neighbors (kGIST , kLDB and kBoW ), GNSS range r
and key position threshold n. In Fig. 7 (a), the different preci-
sions and recalls derived from different parameter values are
utilized to fit the precision-recall curve of visual localization.
Compared with mere GNSS localization, the visual localiza-
tion attains better recall and precision. Setting parameters to
the optimal values, we test key position prediction again on
the same query trajectory. Fig. 7 (b) and (c) illustrate that the
predicted key positions are close to the ground truths, even
illumination and FOV differ.



TABLE I
PERFORMANCE OF DIFFERENT IMAGE DESCRIPTORS ON MULTI-MODAL IMAGES

Trajectory
RGB RGB-IR RGB-IR-D

GNSS
GIST BoW CS LDB GIST LDB GIST LDB

1a
Sensitivity 89.6% 96.2% 94.0% 91.5% 69.8% 90.6% 54.7% 93.4% 100.0%

Error 7.73 5.08 9.55 9.03 9.72 9.35 13.03 9.20 9.11

2b
Sensitivity 75.3% 99.0% 87.1% 88.7% 89.7% 90.7% 94.9% 82.5% 100.0%

Error 4.33 2.21 8.88 9.43 5.62 8.31 5.07 9.10 3.74
a105 query data with illumination different from database. b97 query data with illumination similar to database.

Fig. 7. (a) The precision-recall curve of visual localization (blue), the
precision and recall of GNSS localization (red). (b) The labeled key positions
in database trajectory with 17, 17 and 15 data per key position respectively.
(c) The matching positions in query trajectory.

TABLE II
PERFORMANCE OF VISUAL LOCALIZATION

Trajectory
Image Visual Localization GNSS

Number Error Recall Error Recall
1a 215 11.5 36.4% 14.8 0

2a 208 4.1 29.4% 8.4 0
aWalking along the database trajectory reversely.

In order to validate robustness, we test key position localiza-
tion on the rest two query trajectories of the dataset, which are
traversed reversely to the database trajectory. Recall and key
position localization error (the mean index difference between
predicted positions and ground truths) are used to characterize
the performance. As presented in TABLE II, the proposed
localization approach achieves higher recall and lower error
compared with GNSS localization.

C. Field Tests

The wearable system Intoer is utilized to run the proposed
algorithm to validate its key position localization performance
in practical scenarios. The experiment is carried out on an
approximately 400-meter route from point A to point B. When
we traverse the routes at first time, four positions are labeled as
key positions, where different views of the scenes are captured
by the multi-modal camera, meanwhile the GNSS signal is
recorded. Two views of each labeled key position are presented

in Fig. 8 (a)-(d). When the labeled routes are traversed again,
the algorithm predicts whether the current position is a key
position according to the acquired multi-modal images and
GNSS signals. Fig. 8 (e) presents the predicted key positions
when the user walks from point A to point B, and Fig. 8 (f)
presents the predicted key positions when the user walks in the
reverse direction of the route. The field test illustrates that the
proposed approach achieves accurate localization in practical
use. As for efficiency, the field test verifies that the proposed
algorithm implemented on the portable platform achieves real-
time response. The processing time to predict one position is
around 250 ms, which is less than the interval of image capture
(one second in this paper).

V. CONCLUSION

In order to achieve navigational assistance for people with
visual impairments, we propose a visual localization approach
which combines GNSS signals with multiple image descriptors
extracted from multi-modal images.

For high localization precision, multi-modal images, RGB,
depth and infrared images included, are utilized in the paper.
Besides, multiple descriptors, both holistic and local, are
used to depict image comprehensively. Combined with GNSS
signals, the approach matches the query images with the
database images, and predicts whether the current location is a
pre-labeled key position. The experiments carried on both the
self-captured dataset and practical scenarios indicate that the
proposed visual localization approach is accurate and efficient
for the assistive navigation of visually impaired people.

In the future, the visual localization will be improved on the
environmental robustness in terms of sequential localization
and low illuminance localization.
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