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ABSTRACT  

In recent years, with the development of new materials, transparent objects are playing an increasingly important role in 

many fields, from industrial manufacturing to military technology. However, transparent objects sensing still remains a 

challenging problem in the area of computational imaging and optical engineering. As an indispensable part of 3-D 

modeling, transparent object sensing is a long-standing research topic, which aims to reconstruct the surface shape of a 

given transparent object using various kinds of measurement methods. In this paper, we put forward a new method for the 

sensing of such objects. Specifically, we focus on the sensing of thin transparent objects, including thin films and various 
kinds of nano-materials. The proposed method consists of two main steps. Firstly, we use a deep convolutional neural 

network to predict the original distribution of the objects from its recorded intensity pattern. Secondly, the predicted results 

are used as initial estimates, and the iterative projection phase retrieval algorithm is performed with the enhanced priors to 

obtain finer reconstruction results. The numerical experiment results turned out that, with the two steps, our method is able 

to reconstruct the surface shape of a given thin transparent object with a high speed and simple experimental setup. 

Moreover, the proposed method shows a new path of transparent object sensing with the combination of state-of-art deep 

learning technique and conventional computational imaging algorithm. It indicates that, following the same framework, 

the performance of such method can be significantly improved with more advanced hardware and software 

implementation. 
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1. INTRODUCTION  

With the development of new materials and manufacturing technology, transparent objects such as nano-materials, micro-

optics and thin films are widely used in different research fields [1-3].  However, these objects are usually very thin such 

that it is hard to sense their shape and distribution using traditional methods. Besides, compared with opaque objects, their 

nature of reflection, refraction, absorption and scattering of incident light makes them more difficult to be accurately 

reconstructed. For example, the 3-D distribution of opaque objects can be more easily attained through the measurement 

of only reflected light [4]. On the other hand, when it comes to transparent objects, if only reflected light is considered, a 

lot of surface information will be missed in a practical situation [5].  

Taking account of their unique characteristics, the sensing of such thin transparent objects is still very challenging. The 
existing methods for normal 3-D transparent object sensing can be categorized into two groups: intrusive methods and 

non-intrusive methods. Intrusive methods usually detect the object by covering it with a coating or immersing it into 

refractive liquids [6,7]. However, these methods may be harmful for the detected objects and are incapable of handling 

difficult situations. In recent years, image-based non-intrusive methods begin to show their potential to solve such problem 

as computer vision and optical engineering are undergoing a monumental boom. These techniques, on the other hand, 

intend to reconstruct the transparent object from the light which propagates through it, usually by inverse calculation of 

the captured images with the help of specially designed setups and computational imaging algorithms. Many preliminary 

studies have been carried out in this domain and most of them are able to solve this problem to some extent. We categorize 

them as follows. 

One of the most popular techniques that are widely used is phase-shifting digital holography. This technique uses phase-

shifted reference waves and retrieves complex shape of transparent objects from the recorded holograms [8-10]. It requires 
precise adjustment of the experimental setups to produce reference waves with shifted phases and is therefore not very 

convenient to deploy in some adverse environments. In comparison with holography, deflectometry is a technique which 



 

 
 

 

is more simple to implement, but it can only achieve limited quality if the computational cost is reduced to an acceptable 

level. It realizes transparent object sensing using a LCD panel to display the coded patterns and measures the distortion of 

the patterns with spatial gradient calculation or vector analysis [11-13]. Another commonly applied technique is Time-Of-

Flight (TOF) distortion. This method is designed to recover a transparent object from a single view using a TOF image 

sensor [14-16], but it is actually limited to low resolution which is bounded by the TOF sensor. Other attempts to solve this 

problem include tomographic imaging [17,18], phase contrast light microscopy [19], inverse raytracing with polarization 
imaging [20] and scatter trace photography [21]. 

When it comes to thin transparent objects, because they can be regarded as thin phase objects, the technique of phase 

recovering and wave-front sensing can be also employed. Previous studies include detecting the distribution of transparent 

objects using traditional phase retrieval algorithm [22] and Shack-Hartmann wave-front sensor [23]. These methods merely 

use conventional algorithms so the speed and accuracy of reconstructed results are not that satisfactory. 

To improve the present performance on thin transparent object sensing, in this paper, we put forward a method that 

combines the state-of-art deep learning technique with the conventional computational imaging algorithm. By using a 

convolutional neural network to provide an optimized initial estimate to the iterative projection algorithm, we successfully 

reconstruct the shape of the given thin transparent object through its recorded intensity pattern. Numerical experiment 

results turned out that, with the enhanced prior from neural networks, the traditional phase retrieval algorithm can achieve 

the sensing of transparent objects with a relatively higher speed and accuracy. 

 

2. METHOD 

2.1 Problem formulation 

As mentioned in the previous section, objects that are transparent to light can be actually regarded as phase objects. When 

placed in an optical imaging system, they will introduce extra phase to the light propagating through them. Therefore, the 

surface shape of such objects can be then calculated from the measured phase distribution. In this paper, we simplify the 

problem by assuming that the refractive index of the material is already known, so the profile of the object can be calculated 

from its surface height. We describe the surface shape of the sample object as: 

𝑧 = 𝑠(𝑥, 𝑦)                                                                                  (1) 

 

     Figure 1. Ray schematic. The collimated light going through the thin transparent object is diffracted. Then the imaging optics are 
applied to propagate it to different imaging planes. 

As shown in Figure 1, supposing that 𝑈𝑖(𝑥, 𝑦) and 𝑈𝑜(𝑥, 𝑦) are the complex amplitudes of the light before and after 

propagating through the sample, 𝑈𝑜(𝑥, 𝑦) can be formulated as 

𝑈𝑜(𝑥, 𝑦) = 𝑈𝑖(𝑥, 𝑦)𝑃𝑡𝑜𝑏𝑗(𝑥, 𝑦)                                                                  (2) 

where 𝑃𝑡𝑜𝑏𝑗(𝑥, 𝑦) denotes the transmission coefficient and it can be calculated from the phase introduced by the sample: 

𝑃𝑡𝑜𝑏𝑗(𝑥, 𝑦) = 𝑒𝑖𝜑(𝑥,𝑦)                                                                           (3) 



 

 
 

 

𝜑(𝑥, 𝑦) = 𝑘𝑠(𝑥, 𝑦)(𝑛 − 1)                                                                        (4) 

The definition of 𝑠(𝑥, 𝑦) is mentioned above, where k is the wave vector of incident light and n is the refractive index of 

the material. A lens finally images the diffracted light to imaging planes where a movable CMOS camera is placed and 

can be moved along the optic axis. Then the problem becomes: given the recorded patterns at imaging planes, how can we 

retrieve the phase 𝜑(𝑥, 𝑦) of the objects? In this way, we can finally obtain their surface shapes from the phase. Traditional 
phase retrieval algorithm may be a solution, but its performance is very limited without sufficient knowledge of the original 

distribution. Therefore, in this paper, we firstly use a deep convolutional neural network to predict an estimate of 𝜑(𝑥, 𝑦), 

and then use the iterative projection algorithm to attain a finer reconstructed result. Figure 2 shows a schematic diagram 

of the proposed transparent object sensing system. In the following sections, we will demonstrate how these two steps are 

actually achieved to solve this problem. 

 

     Figure 2. A schematic diagram of the proposed transparent object sensing system. 

2.2 Neural network training 

As is shown in Figure 2, in our transparent object sensing system, the CMOS camera will capture the intensity patterns at 

the image planes. Then one of these intensity images, which is captured near the focus of the imaging system, will be pre-

processed and fed into the deep convolutional neural network. The neural network will use this intensity pattern to 

approximately predict an estimate of 𝜑(𝑥, 𝑦). In this part, we chose Inception-Resnet-v2[24] as a basic network to fulfill 

feature extraction, considering its outstanding performance in the ImageNet classification competition [25]. We adapt it to 

perform regression tasks by removing the top layers, and adding a Global Average Pooling layer and a Dropout layer. The 

architecture of the network is shown in Figure 3. 

 

     Figure 3. The adapted architecture of our neural network based on Inception-Resnet-V2 to perform regression tasks. 

The network takes the recorded intensity image captured by the CMOS camera as input. The input intensity image is 

augmented to enhance some dim features that cannot be seen clearly from the original picture. The output of the network 

are 80 Zernike coefficients which are used to approximately describe the surface distribution 𝑠(𝑥, 𝑦). In this way, s(𝑥, 𝑦) 

is transformed into polar coordinate 𝑠(𝑟, 𝜃)  and represented with a Zernike series zi with coefficients ai
 [26]: 

𝑠(𝑟, 𝜃) = ∑ 𝑎𝑖𝑧𝑖(𝑟, 𝜃)80
𝑖=1                                                                          (5) 

where r is the radial distance and θ is the azimuthal angle on the pupil plane. 

This network is trained on a synthetic dataset that we generated a large number of transparent object surfaces and 

corresponding intensity patterns through a two-step angular spectrum propagating method. We use Adam optimization 

method [27] during the network training with an initial learning rate of 0.0001 and a batch size of 8. The network is trained 



 

 
 

 

over 60 epochs. The dropout ratio is set to 0.2 in the last dropout layer in order to avoid over-fitting. Moreover, the 80 

coefficients are randomly distributed within the range of [-0.5,0.5] to generate arbitrary surface shapes. There are 150000 

and 6000 surface-intensity pairs in the training and validation dataset respectively and another 100 pairs are generated for 

the purpose of testing. Some examples of the generated surface shape and corresponding intensity patterns are shown in 

Figure 4 row (a) and row (b) respectively. It takes some time to train the network from scratch, but after the training process 

is accomplished, in a real transparent object sensing system, the network takes only a few milliseconds to perform inference 
on an ordinary desktop computer with a modern GPU. 

   

 

     Figure 4. Examples of (a) generated arbitrary surfaces of transparent objects and (b) corresponding intensity patterns in the network 
training dataset. 

2.3 Iterative projection phase retrieval algorithm 

Once the recorded intensity pattern is taken as the input of the neural network, it will give out the results of 80 Zernike 

coefficients that approximately predict the distribution of original surface shape. After that, we use these coefficients to 

generate a corresponding phase map and it can be used as an optimized initial estimate of the traditional phase retrieval 

algorithm. A Non-linear Optimization Phase Retrieval (NOPR) algorithm is employed in the proposed method. 

This algorithm uses three intensity measurements near the focus to simultaneously reconstruct the phase and amplitude of 

the input complex light field. As illustrated in Figure 1, this algorithm firstly starts from an initial guess of light filed in 

the object plane and propagates it to the imaging plane using two-step angular spectrum propagating method at the distance 

z. This plane is then referred to as a master plane and the other two are chosen as slave planes. We use the measured 
diffraction pattern of the master plane to reconstruct the phase on this plane by iteratively propagating it to slave planes 

and back. Each plane is employed as the master plane successively while each time only a small number of iterations are 

performed. Then the light is propagated back to the object plane to start another iteration. Root Mean-Squared (RMS) error 

is used to evaluate the difference between the original and reconstructed shape in the simulation. The algorithm will go 

through several iterations to acquire a reconstructed phase distribution on the object plane until the residual RMS error 

meets the threshold. In the field of phase retrieval, capture range, which implies how the initial estimate is close to the 

ground truth, is a commonly known problem. Normal applications of this technique requires a good starting estimate of 

original surface shape. Therefore, the convolutional neural network described in section 2.2 is used to provide enhanced 

priors. In this way, we can achieve phase-retrieval-based transparent object sensing. 
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(b) 



 

 
 

 

3. NUMERICAL EXPERIMENTS 

In this section, numerical experiments were carried out to evaluate the performance of proposed transparent object sensing 

method. The codes were implemented in Keras and MATLAB, and executed on a computer with an Intel Core CPU 

running at 2.80GHz and a NVIDIA GeForce GTX1060 GPU. Firstly, before object sensing, we trained the established 
neural network using our synthetic dataset which includes pairs of arbitrary surfaces and corresponding intensity patterns. 

As mentioned above, the captured intensity patterns would firstly go through the image pre-processing step before it was 

input into the neural network. An example of the intensity pattern before and after pre-processing is shown in Figure 5. It 

is clearly that with the pre-processing step, the intensity pattern was more capable of augmenting the dim features, which 

was proved later by experiments that after pre-processing the loss function of the neural network converged to a relatively 

lower value based on the same training configuration. 

 

     Figure 5. Intensity patterns (a) before and (b) after pre-processing. 

Next, we used the proposed method to reconstruct the original shape of target thin transparent object. Experimental results 
from the two steps are also studied carefully. Numerical simulation results were given to evaluate the speed and accuracy. 

Firstly, the thin transparent object was placed in an imaging system to obtain its intensity patterns. The focal length of the 

imaging system was 500 mm. The distance z was therefore z = 500 𝑚𝑚 and the displacement distances were ∆𝑧1 =
−60 𝑚𝑚 and ∆𝑧2 = 40 𝑚𝑚 respectively. After this, the intensity pattern image at the focus was enhanced and normalized 

following the above instructions and then fed to the neural network. The neural network predicted 80 Zernike coefficients 

from the image and these coefficients were used to generate the predicted surface map. At the end of this, this surface map 

was used as an optimized initial estimate. Non-linear phase retrieval algorithm was performed starting from this initial 

solution, then it iteratively calculated the estimated light field in object and image plane from their recorded intensities by 

repeatedly propagating the light among these planes. In this step, because the calculated phase distribution was wrapped 

into [0, 2π] due to the nature of NOPR algorithm, a robust two-dimensional phase unwrapping algorithm [28] was employed 
to address the distribution issue. With the reconstructed unwrapped phase distribution, the surface shapes can be then 

calculated from equation (4). 

Figure 6 shows the ground truth surface shapes of original thin transparent objects, the predicted surface shapes from the 

deep convolutional neural network and the reconstructed surface shapes from NOPR algorithm respectively. In all of these 

three experiments, the sample points at object and image plane were both set to 299 × 299 in order to fit the input size of 

neural network, such that the pixel size was 33.44 µm. Besides, the original intensity images were normalized to [0, 1] 

before processed by the deep convolutional neural network. It can be seen that the proposed method can achieve the sensing 

of thin transparent objects with very sophisticated surface distributions and the reconstruction is dense. The predicted 

results are quite close to the original ones, while the reconstructed results are even closer. The processing speed of our 

method is about 1s for every single image which is fast enough for general usage. The object sensing speed can be 

accelerated with more advanced hardware devices and extended dataset with the use of a spatial light modulator. For 

objects with a larger size, they can be reconstructed by gradually moving the sample in the plane perpendicular to the 

incident light using the same experimental instruments. 
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     Figure 6. (a) Ground truth surface distribution; (b) Predicted surface shape from the deep convolutional neural network;  

     (c) Reconstructed surface shape from NOPR.  

Figure 7 presents the quantitative results of the 100 samples in the test dataset. It shows both the RMS errors of original 

surface shapes, and the residual RMS errors between original surfaces and reconstructed results. In most of the cases tested, 

the residual errors of our proposed method have been reduced to a relatively low value, which is calculated to be less than 

1/7 of the original RMS errors with respect to the surfaces. This proves the effectiveness of our algorithm. But it is worth 

noticing that there are still a few failure cases which indicates the reconstructions in these samples are actually crashed 

down due to some reasons. We checked these data and found out that in these cases, the predicted shapes in step 1 are far 

from satisfactory, which means, the initial estimates provided to the iterative phase retrieval algorithm are not that good. 

In this regard, it could be improved by further training the neural network with a more sufficient dataset so that the accuracy 

of predicted results can be sufficient for the subsequent algorithm to reconstruct a better result. 

 

     Figure 7. Original and residual RMS error of the 100 samples in the test dataset.  
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4. CONCLUSION 

In this paper, we proposed a method for the sensing of thin transparent objects based on conventional computational 

imaging algorithm with enhanced priors from deep learning. In order to reach this goal, we firstly trained a deep 

convolutional neural network using a synthetic dataset generating from two-step angular spectrum method. Then, this 
network is used to predict the surface distribution of the target object from its captured intensity pattern. A Zernike 

polynomials description of the shape of transparent objects is presented. Finally, the predicted surface serves as an 

enhanced prior for the non-linear phase retrieval algorithm and the reconstructed surface is calculated from this initial 

estimate. 

The numerical experiments turned out that the proposed method is able to achieve the sensing of thin transparent objects 

with complicated and arbitrary surface distributions. The computational cost mainly lies in the training of neural network 

and iterative projection phase retrieval algorithm but the actual processing time of the whole algorithm can be limited to 

within 1 second for each single image on a modern GPU processor. The accuracy of our sensing system is also studied and 

the residual RMS errors of reconstructed results are calculated to be less than 1/7 of original RMS errors with respect to 

the surfaces in most tested cases. Though it is obvious that Zernike polynomials are not enough to describe the surface 

shape of all various kinds of thin transparent objects, still, the results in this paper give us the critical insight that the sensing 
of such objects can be realized with the combination of deep learning and conventional phase retrieval methods. To 

reconstruct more complicated surface shapes, an image-to-image neural network like U-net could be considered. With 

regard to the phase retrieval, it can also process phase maps that are in other forms instead of the Zernike polynomials 

representation. 

In the future work, more experiments will be carried out with the employment of a spatial light modulator and some noises 

will be added to the training dataset to enhance the robustness of this algorithm. Furthermore, other hardware and software 

implementations will be considered to improve the performance of our proposed method following the same framework. 
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